• Title/Summary/Keyword: Energy reducing factors

Search Result 162, Processing Time 0.025 seconds

A Study on Improvement and Effect of Carbon Point Program for Residential Buildings in Daegu (대구광역시 주거 건축물의 이산화탄소 배출 감축을 위한 탄소포인트제의 효과 및 개선방향에 관한 연구)

  • Yeo, Myung-Kil;Jeon, Gyu-Yeob;Hong, Won-Hwa;Cho, Woong-Ho
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.11-18
    • /
    • 2012
  • The amount of energy consumption in the buildings is approximately 20% of domestic energy consumption. The Carbon Point Program have been published on reduction of greenhouse gas emission in buildings under the paradigm of 'Low Carbon Green Growth'. This study focuses on the effect of 'Carbon Point Program' for residential buildings in Daegu. The amount of electricity and waterwork consumption and information of households were investigated to analyse the effect of carbon point program. The samples are situated in Deagu and are apartment in Bukgu and Suseonggu. The $CO_2$ emission is analysed by factors of energy resource and household organization between before participating and after participating in Carbon Point Program. The participation type has a difference of voluntary participation in Suseonggu and passive participation in Bukgu. Based on this investigation, average amount of $CO_2$ emission was reduced from voluntary participation households but all of them did not. To promote the effect of Carbon Point Program, this study proposes that needing the plans to raise will and activity of reducing carbon and to help participation which have disadvantage against achieving reduction.

INVESTIGATION ON OPTIMAL LOCATION OF SEPARATION PART FOR LARGE SCALE WIND TURBINE BLADE

  • Wooseong Jeong;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-3
    • /
    • 2024
  • Around the world, fossil fuel energy is being replaced with renewable energy due to environmental problems and sharp price increases. Many countries are making a change in the direction of moving toward eco-friendliness by reducing carbon emissions. Among renewable energies, the wind energy is eco-friendly because it produces electricity by wind power without carbon emissions, and it attracts attention worldwide as a great alternative to the exhausted fuel energy. To improve the efficiency of wind turbines, large and extra-large wind turbines have been developed all over the world by increasing install and diameter. These wind turbines have difficulty in transport after manufacture because of their size and height. Since the height of wind turbine blades is higher than the existing tunnel height, it is impossible to transport them. In this study, therefore, a 5 MW class large blade was separated for transport easiness as wind power generators became larger globally. Aerodynamic design and analysis was carried out for the blade. After performing structural design and analysis with the model designed, the stress concentration of the analyzed model and the various factors for consideration when separating were considered to conduct the study of selecting the optimal blade separation positions.

A Study on Investigation and Analysis of Photovoltaic Facilities for Building -Application in Jecheon Area- (건물적용 태양광 발전시설 실태 조사.분석에 관한 연구 - 제천지역을 중심으로 -)

  • Yun, Doo-Young;Kim, Jun-He;Yoo, Dong-Cheol;Lee, Eung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.354-359
    • /
    • 2012
  • With the long-term use of fossil fuel, the whole world is suffering from serious abnormal changes in weather caused by global warming. For this reason, many countries are reducing greenhouse gas emissions out of obligation and the allowable emissions are assigned to each country. Korea is also putting much effort into reducing greenhouse gas emissions by 30 percent against BAU(Business As Usual) by 2020, and is pushing ahead with several projects such as 'Million Green Home' and 'Hatsal Gaduk Home' to expand the use of new renewable energy in house as part of its policy. This study was designed to come up with improvements and help to expand photovoltaic facilities, by investigating and analyzing the current state of photovoltaic facilities in the country and problems in installing them through an in-site reconnaissance and a survey in Jecheon area. As the result, it was found that residents in the area were inadequate to operate and install photovoltaic facilities, lacked awareness of them and felt burdened economically by managing and installing them, although they had a high awareness of solar energy and photovoltaic facilities are constantly increasing with governmental support. In conclusion, it is considered that as improvements, operational effects should be increased through development of techniques, factors to reduce the effects in operating them due to insufficient management and installation should be removed and awareness of residents need to be improved through long-term plans, political support and education of the government.

  • PDF

LMDI Decomposition Analysis for GHG Emissions of Korea's Manufacturing Industry (LMDI 방법론을 이용한 국내 제조업의 온실가스 배출 요인분해분석)

  • Kim, Suyi;Jung, Kyung-Hwa
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.229-254
    • /
    • 2011
  • In this paper, we decomposed Greenhouse-Gas emissions of Korea's manufacturing industry using LMDI (Log Mean Divisia Index) method. Changes in $CO_2$ emissions from 1991 to 2007 studied in 5 different factors, industrial production (production effect), industry production mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect), and $CO_2$ emission factors (emission-factor effect). By results, the structure effect and intensity effect has a role of reducing GHG emissions and The role of structure effect was bigger than intensity effect. The energy mix effect increased GHG emissions and emission-factor effect decreased GHG emissions. By time series analysis, IMF regime affected the GHG emission pattern. the structure effect and intensity effect in that regime was getting worse. After 2000, in the high oil price period, the structure effect and intensity effect is getting better.

  • PDF

A Study of the Possibility of Building Energy Saving through the Building Data : A Case Study of Macro to Micro Building Energy Analysis (건물데이터를 통한 건물에너지 절감 가능성에 대한 연구 : 도시단위의 거시적 분석부터 미시적 건물에너지 분석사례)

  • Cho, Soo Youn;Leigh, Seung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.580-591
    • /
    • 2017
  • In accordance with 2015 Paris agreement, each individual country around the world should voluntarily propose not only its (individual) reduction target, but also actively develop and present expansion targets of its scope and concrete reduction goals exceeding the previous ones. Accordingly, it is necessary to prepare a macroscopic, long-range strategy for reducing energy consumption and greenhouse gas emissions, which can cover a single building, town, city and eventually even a province. The purpose of this research is to gather and compile government-acquired data from various sources and (in accordance with contents and specificity), combine building data by stages by using multi-variable matrix and then analyze the significance of combined data for each stage. The first order data presents the probability and the cost effectiveness of energy saving on the scale of a city or a province, based only upon general information, size and power consumption of buildings. The second order data can identify a pattern of energy consumption for a building of a specific purpose and which tends to consume a larger amount of energy during one particular season (than others). Finally, the third order data can derive influential factors (base load, humidity) from the energy consumption pattern of a building, and thus propose an informed and practical energy-saving method to be applied in real time.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Eco-efficiency Analysis of Urban Agglomeration in the Middle Reaches of the Yangtze River

  • Chen, Minghui;Miao, Jianjun
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Purpose - Urban agglomeration construction is one of national strategic plans to accelerate the development of industrialization and urbanization in China, which has threatened the eco-environmental quality at the same time. This paper selected the urban agglomeration in the middle reaches of the Yangtze River as the research area. Research design, data, and methodology - The the slack-based measurement (SBM) model considering undesirable outputs is applied to measure the eco-efficiency of this urban agglomerations during 2006-2015. Results - The empirical results show that average eco-efficiency of the urban agglomeration in the middle reaches of the Yangtze River is 0.595. Regional ecological development is unbalanced. The highest eco-efficiency is recorded at Wuhan Metropolitan Area, and the lowest one is at the Changsha-Zhuzhou-Xiangtan City Group. Energy consumption and waste dust emissions are the key factors led to ecological inefficiency. Based on this, potentials for energy saving and waste dust reducing are calculated. Conclusions - Finally, this study provides policy implications targeted to promote the coordinating development of economy and eco-environment under the construction of urban agglomeration.

A Study on Evaluation of Daylighting in Office Space Applied BIPV Systems in Accordance with Power Performance (사무공간 적용 BIPV시스템의 자연채광 및 성능평가에 관한 연구)

  • Seo, Young-Seok;Oh, Min-Suk;Kim, Hway-Suh
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.148-154
    • /
    • 2009
  • By the skyscraper building, increase of skin area and expansion of curtain wall system will be the important factors of acceleration in extending supply of BIPV system. In the future interior environmental evaluation is not a necessary to the residents but an essential term which will bring enormous influence. In the interior environmental evaluation, natural light will let the residents with direct contact with outside circumstances and make them feel opened. also only the daylight has radiant energy and color rendering that will have a great influence to residents' mental, operation efficiency and advancing productivity. This research compares and analyzes BIPC system in office spaces with two general sunlight's module. In addition to natural light's efficiency for BIPC system's comfort and confirmed economical efficiency will be applied to basic research data. Hence forth, ensuring indoor intensity of illumination and controlling light system to reducing energy research data will be demanded to increase the amount of supplying BIPC system. Also continuance research in the possibility of applying BIPC system in various buildings, room temperature affected by location of windows and its condensation, and economical evaluation will be required.

  • PDF

Economical and Environmental Study on SNG Combined Cycle Integrated with CCS for Large-Scale Reduction of CO2 (Based on NETL Report) (대용량 CO2 감축을 위한 CCS 연계 SNGCC의 경제성 및 환경성에 대한 연구(NETL 보고서를 중심으로))

  • SEO, DONG-KYUN;KWON, WON SOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2015
  • Recently the Korean government announced its decision to select the $3^{rd}$ proposal, which targets reducing $CO_2$ by 37% of the BAU level by 2030, for the Intended Nationally Determined Contribution (INDC). According to this proposal, natural gas (or equivalent gas) combined cycle (NGCC) are suggested as alternatives for conventional pulverized coal (PC). In this study, we analyzed the environmental, economic, and energy mixing aspects of synthetic natural gas combined cycle(SNGCC) using NETL material (2011~2012 version) and other domestic materials (2014 version). We found the following conclusions: 1) Considering carbon capture and storage (CCS) integration, $CO_2$ emission factors of SNGCC and supercritical PC are the same. However, 60% of $CO_2$ from SNGCC is produced as high pressure and high purity (99%) gas, making it highly suitable for CCS, which is now strongly supported by the government. 2) Based on the economic analysis for SNGCC using domestic materials and comparison with NGCC, it was found that the settlement price of SNGCC was 30% lower than that of NGCC.

Prediction of Pressure Drop Using the Internal Flow Simulation of Pulse Air Jet Bag Filters (충격기류식 여과집진기의 내부 유동 시뮬레이션 해석을 통한 압력손실 예측)

  • Jang, Kyeong-Min;Jung, Eun-Sang;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.457-468
    • /
    • 2020
  • With continuous industrial development, the types, and amount of particulate matter (PM) have been increasing. Since 2018, environmental standards regarding PM have become more stringent. Pulse air jet bag filters are suitable for PM under the 20 ㎛ and, can function regardless of size, concentration and type. Filtration velocity and shape are important factors in the operation and design of the pulse air jet bag filters however, few established studies support this theory. In this research, numerical simulations were conducted based on experimental values and, several methods were employed for minimizing the pressure drop. In the pilot system, as the inlet duct velocity was faster than 19 m/sec, flow was not distributed equally and, re-entrainment occurred due to the hopper directional vortex. The multi-inlet system decelerated the hopper directional vortex by 25 ~ 30%, thereby decreasing total pressure drop by 6.6 ~ 14.7%. The guide vane system blocked the hopper directional vortex, which resulted optimal vane angle of 53°. The total pressure of the guide vane system increased by 0.5 ~ 3% at 1.5 m/min conditions. However, the filtration pressure drop decreased by 4.8 ~ 12.3% in all conditions, thereby reducing the operating cost of filter bags.