• Title/Summary/Keyword: Energy recovery Inverter

Search Result 33, Processing Time 0.032 seconds

Three Phase GTO PWM Inverter Using the Energy Recovery Snubber Circuit (에너지 회생 방식 스너버 회로를 각는 3상 GTO PWM 인버터)

  • 신병철;강경호;차재현;차득근;김명현
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.255-259
    • /
    • 1998
  • This paper is proposed three phase GTO PWM Inverter with energy recovery snubber circuit. The proposed energy recovery snubber circuit effective in reduction of the power loss in the Inverter system than asymmetry GTO snubber circuit.

  • PDF

EEFL Inverter Design with Program Control (프로그램 제어용 EEFL 인버터 설계)

  • Lee, Choong-Ho;Kim, Jung-Sam;Yoon, Dong-Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • Proposed EEFL inverter design method with Dimming control to use microprocessor. Reduce power loss using Energy Recovery method, and design inverter control program that use RS-232 communication. Also, low temperature driving time shortened 50% that use duty variable control.

  • PDF

Currant Source GTO Inverter with Double Recovery Path of Commutation Energy by LCD (수동소자에 의한 축적에너지 2중 궤환방식 전류형 GTO 인버터의 입.출력 특성)

  • Kim, Jin-Pyo;Choi, Sang-Won;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2104-2106
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter, we used a induction motor as inverter load, and controlled a induction motor with v/f constant control. Experimental results show that dissipated DC power is decreased in $9{\sim}14%$ by double recovery path. We also confirmed that the characteristics is met as compare simulation results with experimental results according to each frequency.

  • PDF

The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy (전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF

A Study on High Performance Operation of Hybrid Energy Recovery Drive System for Piezoelectric Pump (피에조 펌프 구동용 에너지 회수형 하이브리드 구동장치 고성능 운전에 관한 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Cho, Yong-Ho;Kim, Ki-Seok;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1426-1431
    • /
    • 2015
  • Piezoelectric pump can be considered as R-C load and it needs something special driver because the output voltage does not become 0 even though the applied voltage is 0 with common converter. This operating system consists of fly-back converter to increase the input voltage and energy recovery inverter to apply square voltage to the piezoelectric pump. The energy recovery inverter can charge and discharge the energy of capacitive load. In this paper, to enhance performance of the driver, a few elements or circuits are added and modified. To drive the inverter safely, current limit resister is added and adjusted the value to valance the charging and discharging current. In addition, a current limit inductor is added to the input side to limit the input current and enhance the efficiency. Inductor only may make oscillation and another resister is added parallel to the inductor to solve this problem. The converter and inveter are assembled to one board for compactness. The appropriateness is proved with simulation and experiments.

Charge-Pump High Voltage Inverter for Plasma Backlight using Current Injection Method (CIM(Current Injection Method)을 이용한 Charge-Pump 방식의 Plasma Backlight용 고압Inverter)

  • Jang, Jun-Ho;Kang, Shin-Ho;Lee, Kyung-In;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.386-393
    • /
    • 2007
  • Charge-pump high voltage inverter for Plasma backlight using CIM(Current Injection Method) is proposed in this paper. Adoption of ERC(Energy Recovery Circuit) is a new attempt in high voltage inverter so that it is not only energy recovery but also improvement of discharge stability and system unstability which is interrupted by noise. Using a charge-pump technique enables low voltage switches to be usable, the cost can be reduced. CIM is adopted to achieve high speed energy recovery in proposed circuit. Operations of the proposed circuit are analyzed for each mode. The proposed circuit is verified to be applicable on a 32 inch plasma backlight panel by experimental results.

New current source inverter with load-side energy recovery circuit (부하측에 에너지 회생회로를 갖는 전류원 인버터)

  • Chung, Y.H.;Cho, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.117-120
    • /
    • 1988
  • A new current source inverter (CSl) with dc-side commutation and load-side energy recovery circuit is proposed with analysis and explanation of the circuit operation. Proposed inverter overcomes the most drawbacks of the conventional CSI's - high device voltage stress, low operating frequency range, large commutation capacitance, etc. - by employing simultaneous recovery and commutation concept. The new CSI employs only one commutation capacitor and it can be built with considerably low cost. The commutation energies are temporarily stored into a large dc capacitor and recovered to the load side, thus the device voltage stress is low and the efficiency is high in the proposed inverter. Computer simulation results are given at the steady state, and a guideline determining the commutation circuit is given.

  • PDF

Load Simulator with Power-Recovery Capability Based on Voltage Source Converter-Inverter Set (전력회수 능력을 갖는 전압원 컨버터-인버터 세트로 구성된 부하모의장치)

  • Bae B.Y.;Han B.M.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.76-80
    • /
    • 2004
  • This paper describes a load simulator with power-recovery capability, which is based on the voltage source converter-inverter set. The load simulator described in this paper can save the electric energy that should be consumed to test the operation and performance of the distributed generation system and the power quality compensator. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. The load simulator can be widely used in the lab to test the performance of the distributed generation system and the power quality compensator.

  • PDF

Load Simulator with Power-Recovery Capability Based on Voltage Source Converter-Inverter Set (전력회수 능력을 갖는 전압원 컨버터-인버터 세트로 구성 된 부하모의 장치)

  • Bae Byung-Yeol;Han Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.181-187
    • /
    • 2005
  • This paper describes a load simulator with power-recovery capability, which is based on the voltage source converter-inverter set. The load simulator described in this paper can save the electric energy that should be consumed to test the operation and performance of the distributed generation system and the power quality compensator. The load simulator consists of a converter-inverter set with a DSP controller for system control and PWM pulse generation. The converter operates as a universal load to model the linear load and the non-linear load, while the inverter feed the energy back to the power source with harmonic compensation. The load simulator can be widely used in the lab to test the performance of the distributed generation system and the power quality compensator.

Charge-Pump High Voltage Inverter for Plasma Backlight with Current Injection Method (CIM(Current Injection Method)을 이용한 Charge-Pump 방식의 Plasma Backlight용 고압 Inverter)

  • Jang, Jun-Ho;Kang, Shin-Ho;Lee, Jun-Young
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.381-383
    • /
    • 2007
  • Charge-pump high voltage inverter for Plasma backlight with CIM(Current Injection Method) is proposed in this paper. Adoption of ERC is a new attempt in high voltage inverter so that it is not only energy recovery but also improvement of discharge stability and system unstability which is interrupted by noise. Using a charge-pump technique enables low voltage switches to be usable, the cost can be reduce. CIM is adopted to achieve high speed energy recovery in proposed circuit. Operations of the proposed circuit are analyzed for each mode. The proposed circuit is verified to be applicable on a 32 inch plasma backlight panel by experimental results.

  • PDF