• 제목/요약/키워드: Energy recovery

검색결과 1,663건 처리시간 0.04초

An Energy Recovery Circuit for AC Plasma Display Panel with Serially Coupled Load Capacitance-SER1

  • Yang, Jin-Ho;Whang, Ki-Woong;Kang, Kyoung-Ho;Kim, Young-Sang;Kim, Hee-Hwan;Park, Chang-Bae
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.63-67
    • /
    • 2001
  • The switching power loss due to the panel capacitance during sustain period in AC PDP driving system can be minimized by using the energy recovery circuits. We proposed a new energy recovery circuit, SER1 (Seoul national univ. Energy Recovery circuit 1st). The experimental results of its application to a 42-inch surface discharge type AC PDP showed superior performance of SER1 in energy recovery efficiency and low distortion voltage waveform. Energy recovery efficiency of SER1 was measured up to 92.3 %, and the power dissipation during the sustain period was reduced by 15.2 W in 2000 pulse/frame compared with serial LC resonance energy recovery circuit.

  • PDF

Hydrothermal liquefaction of Chlorella vulgaris: Effect of reaction temperature and time on energy recovery and nutrient recovery

  • Yang, Ji-Hyun;Shin, Hee-Yong;Ryu, Young-Jin;Lee, Choul-Gyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.267-273
    • /
    • 2018
  • Hydrothermal liquefaction of Chlorella vulgaris feedstock containing 80% (w/w) water was conducted in a batch reactor as a function of temperature (300, 325 and $350^{\circ}C$) and reaction times (5, 10 and 30 min). The biocrude yield, elemental composition and higher heating value obtained for various reaction conditions helped to predict the optimum conditions for maximizing energy recovery. To optimize the recovery of inorganic nutrients, we further investigated the effect of reaction conditions on the ammonium ($NH_4{^+}$), phosphate ($PO_4{^{3-}}$), nitrate ($NO_3{^-}$) and nitrite ($NO_2{^-}$) concentrations in the aqueous phase. A maximum energy recovery of 78% was obtained at $350^{\circ}C$ and 5 min, with a high energy density of 34.3 MJ/kg and lower contents of oxygen. For the recovery of inorganic nutrients, shorter reaction times achieved higher phosphorus recovery, with maximum recovery being 53% at $350^{\circ}C$ and 5 min. Our results indicate that the reaction condition of $350^{\circ}C$ for 5 min was optimal for maximizing energy recovery with improved quality, at the same time achieving a high phosphorus recovery.

다양한 환경조건에서 태양전지모듈의 PID회복특성 (PID Recovery Characteristics of Photovoltaic Modules in Various Environmental Conditions)

  • 이은석;정태희;고석환;주영철;장효식;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.57-65
    • /
    • 2015
  • The Potential Induced Degradation(PID) in PV module mainly affected by various performance conditions such as a potential difference between solar cell and frame, ambient temperature and relative humidity. The positive charges as sodium ions in front glass reach solar cell in module by a potential difference and are accumulated in the solar cell. The ions accelerate the recombination of generation electrons within solar cell under illumination, which reduces the entire output of module. Recently, it was generally known that PID generation is suppressed by controlling the thickness of SiNx AR coating layer on solar cell or using Sodium-free glass and high resistivity encapsulant. However, recovery effects for module with PID are required, because those methods permanently prevent generating PID of module. PID recovery method that voltage reversely applies between solar cell and frame contract to PID generation begins to receive attention. In this paper, PID recovery tests by using voltage under various outdoor conditions as humidity, temperature, voltage are conducted to effectively mitigate PID in module. We confirm that this recovery method perfectly eliminates PID of solar cell according to repeative PID generation and recovery as well as the applied voltage of three factors mainly affect PID recovery.

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

계측기기 측정을 통한 생활폐기물 소각시설의 에너지 회수효율 산정 연구 (Estimation of Energy Recovery Rate of Municipal Waste Incineration Facilities through Measuring Instruments)

  • 권영현;강준구;고영재;유하녕;권준화;박호연;전태완;이영기
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.770-776
    • /
    • 2018
  • This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.

지하대수층을 이용한 축열시스템의 설계(II) : 열해석 (Design of an Aquifer Thermal Energy Storage System(II) : Thermal Analysis)

  • 이관수;이태희;송영길
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.315-324
    • /
    • 1994
  • The energy recovery efficiency(ERE) of an aquifer thermal energy storage system was calculated using curvilinear coordinate. The results of the calculation were compared with the experimental results, and agreed within 11% of the discrepancy. The variation of ERE was investigated as a function of the underground water natural velocity, the amount of the stored energy, and period of the energy recovery. The slower the natural velocity and shorter the recovery period, the higher ERE was yielded. Also it was found that increase in the amount of energy storage yields higher ERE, and carries out less influential ERE to the natural velocity. Reiterative usage of the aquifer as a thermal storage tends to gradually increase ERE. The result of this study implements that the aquifer thermal energy storage system is suitable for large cooling/heating loads, such as district cooling/heating.

  • PDF

전열교환 환기시스템의 외기변화에 따른 성능평가 및 에너지평가를 통한 운전방안에 관한 연구 (A Study on Operating Method by Energy Evaluation and Performance Evaluation of Heat Recovery Ventilator According to Outdoor Conditions)

  • 김광현;이정재
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.57-64
    • /
    • 2008
  • Recently, regulation of ventilator installation and its details has been revised and the establishment of heat recovery ventilator in newly built apartments has been obligated. This study was done to offer the method of operation and design of heat recovery ventilator to save energy by measuring its efficiency and comparing with the results of experiment. This paper confirmed that it is desirable to operate heat recovery ventilator by using "by-pass mode" within $60{\sim}80%$ scope of the difference indoor absolute humidity in spring and autumn and outdoor absolute humidity and heat recovery ventilator of energy saving effect is better than constant air volume system.

에너지 회생 방식 스너버 회로를 각는 3상 GTO PWM 인버터 (Three Phase GTO PWM Inverter Using the Energy Recovery Snubber Circuit)

  • 신병철;강경호;차재현;차득근;김명현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.255-259
    • /
    • 1998
  • This paper is proposed three phase GTO PWM Inverter with energy recovery snubber circuit. The proposed energy recovery snubber circuit effective in reduction of the power loss in the Inverter system than asymmetry GTO snubber circuit.

  • PDF

수동소자에 의한 축적에너지 2중 궤환방식 전류형 GTO 인버터의 입.출력 특성 (Currant Source GTO Inverter with Double Recovery Path of Commutation Energy by LCD)

  • 김진표;최상원;이종하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2104-2106
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter, we used a induction motor as inverter load, and controlled a induction motor with v/f constant control. Experimental results show that dissipated DC power is decreased in $9{\sim}14%$ by double recovery path. We also confirmed that the characteristics is met as compare simulation results with experimental results according to each frequency.

  • PDF

전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성 (The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy)

  • 최상원;김진표;이종하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF