• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.051 seconds

A neural network controller based on forward modeling and indirect learning (순방향 모델링과 간접학습에 의한 신경망제어기)

  • 이부환;이인수;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.218-223
    • /
    • 1992
  • This paper describes a learning method of neural network controllers. The learning method improves the performance of indirect learning mechanism in the neuro-control of nonlinear systems. To precisely identify dynamic characteristics of the plant by utilizing a limited prior information we propose a new energy function which takes advantage of the proportional relationship between outputs of the plant and those of neural networks.

  • PDF

Optimization of conversion of sulfur dioxide in sulfuric acid plant (황산 공장의 수율 최적화에 관한 연구)

  • 원종국;조영상;정태경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.664-666
    • /
    • 1987
  • In this study, the computation of optimum operating conditions for catalytic oxidation of sulfur dioxide to sulfur trioxide in CONVERTER which determines the yield ultimately in sulfuric acid plant is performed on an IBM/XT computer. The process simulator of rigorous converter model including mass & energy balance equations and supporting equations is linked to optimizer, which produces the desired results successfully.

  • PDF

A Study on Siting of HVAC Offshore Substation for Wind Power Plant using Submarine Cable Cost Model (해저케이블 비용 모델을 이용한 HVAC 해상변전소 적정 위치 선정에 관한 연구)

  • Won, Jong-Nam;Moon, Won-Sik;Huh, Jae-Sun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.451-456
    • /
    • 2013
  • Development of the technologies for offshore wind power is proceeding actively and the installation capacity is continuously increasing because of its many advantages in comparison with the land wind power. Accordingly, project for Southwestern 2.5GW offshore wind power plant is in progress in Korea. Design of electric power systems for offshore wind power plant is very important due to its high investment and operational costs. Hence, it needs to be designed in order to minimize costs. This way can be employed in determining the installation location of offshore substation for HVAC wind power plant. According to the offshore substation site, MV inter-array cable and HV export cable lengths vary and they change a total cost regarding submarine cable. This paper represents cost models with variables which are MV inter-array cable and HV export cable lengths to locate the offshore substation for HVAC wind power plant. It is classified into submarine cable installation cost, reactive power compensator installation cost, ohmic losses, and unsupplied energy cost. By minimizing a total cost, an appropriate installation site of the offshore substation is determined.

Demonstration of EPRI CHECWORKS Code to Predict FAC Wear of Secondary System Pipings of a Nuclear Power Plant

  • Lee, Sung-Ho;Seong Jegarl;Chung, Han-Sub
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.375-384
    • /
    • 1999
  • The credibility of CHECWORKS FAC model analysis was evaluated for plant application in a model plant chosen for demonstration. The operation condition at each pipe component was defined before the wear rate analysis by plant data base, water chemistry analysis, and network flow analysis. The predicted wear was compared with the measured wear for 57 sample components selected from 43 susceptible line groups analysed. The inspected 57 locations represent components of highest predicted wear in each line group. Both absolute value and relative ranking comparisons indicated reasonable correlations between the predicted and the measured values. Four components showed much higher measured wear rates than the predicted ones in the feed water train from main feed water pump discharge to steam generator, probably due to high hydrazine concentration operation the effect of which had not been incorporated into the CHECWORKS model. The measured wear was higher than the predicted one consistently for components with least susceptibility to FAC. It is believed that the conservatism maintained during UT data analysis dominated the measurement accuracy. A great deal of enhancement is anticipated over the current plant pipe management program when a comprehensive plant pipe management program is implemented based on the model analysis.

  • PDF

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

Selecting plant species for landfill revegetation: a test of 10 native species on reclaimed soils

  • Song, Uhram
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.259-264
    • /
    • 2018
  • Background: Revegetating landfills can be a challenging task as the reclaimed soils are typically dry and have low nutrient content. Therefore, selecting suitable plant species is important for initial revegetation. The issue with current practices (in Korea) is that alien plant species have been typically selected for revegetation projects. In this context, this study selects and tests a set of native plant species for landfill revegetation, accompanied by the assessment of the landfill soils. Results: The soil of the landfill (landfill location) was in a very poor condition with high bulk density and low organic matter and nutrient contents. Among 10 tested species, only Brassica campestris showed high coverage and a sufficient number of individuals in study quadrats sown with seeds. Results suggest that plant species with heavy seeds are the only ones that can adapt to the environment of a typical landfill due to the site's aridity and low nutrient content. The reason is due to such species' superior wind resistance and the capacity to provide sufficient energy for the initial growth of the plants for survival in such landfill environment. Conclusions: This study recommends selecting plant species (1) with arid-adapted features and (2) whose seed weight is sufficiently heavy for survival at landfills or areas with a similar condition for future revegetation.