• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.031 seconds

A Case Study for Analyzing the Optimal Location for A Solar Power Plant via AHP Analysis with Fine Dust and Weather Information (미세먼지와 기상정보 기반의 AHP 분석을 통하여 태양광 발전소 최적입지선정에 대한 사례연구)

  • Lee, Geon-ju;Lee, Gi-Hyun;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.157-167
    • /
    • 2017
  • Solar energy has been known as a successful alternative energy source, however it requires a large area to build power generation facilities compared to other energy sources such as nuclear power. Weather factors such as rainy weather or night time impact on solar power generation because of lack of insolation and sunshine. In addition, solar power generation is vulnerable to external elements such as changes in temperature and fine dust. There are four seasons in the Republic of Korea hereby variations of temperature, insolation and sunshine are broad. Currently factors that cause find dust are continuously flowing in to Korea from abroad. In order to build a solar power plant, a large area is required for a limited domestic land hereby selecting the optimal location for the plant that maximizes the efficiency of power generation is necessary. Therefore, this research analyze the optimal site for solar power generation plant by implementing analytic hierarchy process based on weather factors such as fine dust. In order to extract weather factors that impact on solar power generation, this work conducts a case study which includes a correlation analysis between weather information and power generation.

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

Result and Assignment on Development of Waste Tire Pyrolysis Demonstration Plant with Disk Moving Tube Reactor System (디스크이동식 폐타이어 열분해 실증공정 개발의 성과와 과제)

  • Kim, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.325-328
    • /
    • 2009
  • The 10t/d pyrolysis demonstration plant have been developed for waste tire recycling treatment and value added commercialization. The initial plant model had been started under 2.4t/d capacity with continuous operation, and the commercial plant has been achieved to the 120t/d based on demonstration plant having the tube reactor with chain conveyer attached disk. The next generation pyrolysis plant for waste tire is reviewed and the assignment for plant development is presented briefly.

  • PDF

A Study on the Alternative Technology Evaluation Based on LCA and ″extended″ Energy I/O Technique (LCA와 에너지수지비 개념의 확장을 통한 대체에너지기술의 평가방법론)

  • 박찬국;박영구;최기련
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.317-324
    • /
    • 1999
  • This study suggests the effectiveness of an "extended" power system evaluation methodology based on LCA and energy input-output analysis techniques. This "extended" evaluation methodology is designed to incorporate total energy system costs through fuel cycle and external costs, including CO$_2$abatement cost. As an empirical test, we applied the methodology to orimulsion-fired power generation technology and found that orimulsion could be considered as in attractive base-load power generation fuel in terms of economic and environmental aspects, compared to conventional coal-fired power plant.

  • PDF

Development of Human Factors Engineering Program Plan (HFEPP) for MMIS Design of KNGR

  • Cha, Kyung-Ho;Park, Geun-Ok;Seo, Sang-Moon;Cheon, Se-Woo;Bong S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.355-360
    • /
    • 1996
  • Human factors principles and evaluation methodologies are applied to design the MMIS of the KNGR. Human factors issues identified from the previous MMIS design of a nuclear power plant are considered in the development of the HFEPP. To manage human factors issues in the MMIS design of the KNGR, a conceptual Human Factors Issue Tracking System (HFITS) is also considered.

  • PDF

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Available Technology and Integrated Management Plan for Energy-positive in the Sewage Treatment Plant (에너지 생산형 하수처리장을 위한 가용 기술과 통합관리 방안)

  • Song, Minsu;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • Because of the intensified environmental problems such as climate change and resource depletion, sewage treatment technology focused on energy management has recently attracted attention. The conversion of primary sludge from the primary sedimentation tank and excessive sludge from the secondary sedimentation tank into biogas is the key to energy-positive sewage treatment. In particular, the primary sedimentation tanks recover enriched biodegradable organic matter and anaerobic digestion process produces methane from the organic wastes for energy production. Such technologies for minimizing oxygen demand are leading the innovation regarding sewage treatment plants. However, sewage treatment facilities in Korea lack core technology and operational know-how. Actually, the energy potential of sewage is higher than sewage treatment energy consumption in the sewage treatment, but current processes are not adequately efficient in energy recovery. To improve this, it is possible to apply chemically enhanced primary treatment (CEPT), high-rate activated sludge (HRAS), and anaerobic membrane bioreactor (AnMBR) to the primary sedimentation tank. To maximize the methane production of sewage treatment plants, organic wastes such as food waste and livestock manure can be digested. Additionally, mechanical pretreatment, thermal hydrolysis, and chemical pretreatment would enhance the methane conversion of organic waste. Power generation systems based on internal combustion engines are susceptible to heat source losses, requiring breakthrough energy conversion systems such as fuel cells. To realize the energy positive sewage treatment plant, primary organic matter recovery from sewage, biogas pretreatment, and co-digestion should be optimized in the energy management system based on the knowledge-based operation.

Estimation of energy self-sufficiency in municipal wastewater treatment plant using simulated solar photovoltaic performance (태양광발전시스템 성능 시뮬레이션을 통한 하수처리장 에너지자립율 산정)

  • An, Young-Sub;Kim, Sung-Tae;Chae, Kyu-Jung;Kang, Ji-Hoon;Yang, Hee-Jung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.291-296
    • /
    • 2011
  • This paper presents energy self-sufficiency simulated in municipal wastewater treatment plants (WWTPs) by adopting solar energy production systems that vary with installation conditions. Relative to the national average energy consumption in WWTPs, the employment of 100 kW photovoltaics (PVs) was simulated to achieve 2.75% of energy self-sufficiency. The simulated results suggested that the installation of PVs toward South or South west would produce the highest energy self-sufficiency in WWTPs. When super-hydrophilic coating was employed in the conventional PVs, 5% of additional solar energy production was achievable as compared to uncoated conventional PVs. When 100 kW of PVs were installed in a future test-bed site, Kihyeung Respida located in Yougin, Sourth Korea, the energy self-sufficiency by solar energy was simulated to be 1.77% (2010). The simulated energy self-sufficiency by azimuth(direction) will be useful reference for practitioners in designing the solar PV systems in the WWTPs.

  • PDF

The Effect of Energy Allocation on Competition of Chenopodium album and Digitaria sanguinalis (명아주(Chenopodium album)와 바랭이( Digitaria sanguinalis)의 경쟁이 에너지 분해에 미치는 효과)

  • Park, Bong-Kyu;Kim, Ok-Kyung
    • The Korean Journal of Ecology
    • /
    • v.9 no.1
    • /
    • pp.73-78
    • /
    • 1986
  • The effects of density and soil nutrient regime on competition between individuals in pure and mixed populations of two annuals. Chenopodium album and Digitaria sanguinalis were investigated at the level of enegy allocation. Seedling emergence of two species was extremely high (>90%) in both pure and mixed culture irrespective of the density and nutrient regime, but percentage of seedling establishment or fertile plant became gradually low with increasing density owing to 'self-thinning'. The mean plant dry weight was significantly reduced with increasing density and decreasing soil fertility. The dry matter production of D. sanguinalis in mixture was markedly greater than in pure culture under medium and high density. Also, as considered the number of seed production as reproductive allocation, relationship between them and the number of seed production per plant showed a similar tendency. Therefore, these results indicated that D. sanguinalis had a greater competitive advantage than C. album and energy allocations to variious organs were regulated by plastic response rather than determined genetically.

  • PDF

Experience in Combustion of Various Dewatered Sludges at a Commercial-Scale Fluidized Bed Incinerator

  • Gu, Jae-Hoi;Yoo, Byung-Sang;Yeo, Woon-Ha;Seo, Yong-Chil;Lee, Jea-Keun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.91-96
    • /
    • 2000
  • A commercial-scale Fluidized Bed Incinerator(FBI) to treat dewatered sludges has been developed by Jindo Corporation, Korea, as one of the governmental R&D project during 1990 to 1997. The FBI plant was constructed at Kunsan city and fully in operation after finishing the successful test-burn period since June 1998. The company now has a capability of the design, construction and operation of commercial FBI plants. This paper introduces the experiences of design and operation of Kunsan FBI plant, which has the capacity of 60 ton/day and incinerates various sludges from waste water treatment facilities and liquid waste such as waste oil or waste solvent.

  • PDF