• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.068 seconds

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

Optimization of Ammonia Decomposition and Hydrogen Purification Process Focusing on Ammonia Decomposition Rate (암모니아 반응기의 분해 효율 최적화를 통한 암모니아 분해 및 수소 정제 공정 모델 연구)

  • DAEMYEONG CHO;JONGHWA PARK;DONSANG YU
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.594-600
    • /
    • 2023
  • In this study, a process model and optimization design direction for a hydrogen production plant through ammonia decomposition are presented. If the reactor decomposition rate is designed to approach 100%, the amount of catalyst increases and the devices that make up the entire system also have a large design capacity. However, if the characteristics of the hydrogen regeneration process are reflected in the design of the reactor, it becomes possible to satisfy the total flow rate of fuel gas with the discharged tail gas flow rate. Analyzing the plant process simulation results, it was confirmed that when an appropriate decomposition rate is maintained in the reactor, the phenomenon of excess or shortage of fuel gas disappears. In addition, it became possible to reduce the amount of catalyst required and design the optimized capacity of the relevant processes.

Jatropha curcas: a review on biotechnological status and challenges

  • Mukherjee, Priyanka;Varshney, Alok;Johnson, T. Sudhakar;Jha, Timir Baran
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.197-215
    • /
    • 2011
  • Plant tissue culture and molecular biology techniques are powerful tools of biotechnology that can complement conventional breeding, expedite crop improvement and meet the demand for availability of uniform clones in large numbers. Jatropha curcas Linn., a non-edible, eco-friendly, non-toxic, biodegradable fuel-producing plant has attracted worldwide attention as an alternate sustainable energy source for the future. This review presents a consolidated account of biotechnological interventions made in J. curcas over the decades and focuses on contemporary information and trends of future research.

Mutual Perceptions between Nuclear Plant Employees and General Public on Nuclear Policy Communication Applying the Co-orientation Analysis Model (원자력 관련 정책 커뮤니케이션에 관한 상호인식 연구: 일반 국민과 원전 직원 간의 상호지향성 분석)

  • Kim, Bong Chul;Kim, Ji Hyun;Chung, Woon Kwan
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • This study examines mutual perceptions between general public and nuclear plant employees on understanding nuclear policy communication applying the co-orientation model. The total of 414 responses were analyzed including 211 of the general public and 203 of plant employees. Results indicate that agreement between general public and plant employees is relatively high, in that general public tends to have negative evaluation to nuclear policy communication, but plant employees tends to have positive one. In terms of congruence, general public perceive that plant employees might have more positive evaluation than themselves, and nuclear plant employees perceive that general public might have more negative evaluation than themselves. Finally, in terms of accuracy, general public accurately estimate how nuclear plant employees perceive on policy communication, whereas nuclear plant employees unaccurately estimate how general public perceive on policy communication.

Removal and Decomposition of Impurities in Wastewater From the HyBRID Decontamination Process of the Primary System in a Nuclear Power Plant (원전 일차계통 HyBRID 제염공정 발생 폐액 내 불순물 제거 및 분해)

  • Eun, Hee-Chul;Jung, Jun-Young;Park, Sang-Yoon;Park, Jeong-Sun;Chang, Na-On;Won, Hui-Jun;Sim, Ji-Hyoung;Kim, Seon-Byeong;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.429-435
    • /
    • 2019
  • Decontamination wastewater generated from the HyBRID decontamination process of the primary system in a nuclear power plant contains impurities such as sulfate ions, metal ions containing radioactive nuclides, and hydrazine (carcinogenic agent). For this reason, it is necessary to develop a technology to remove these impurities from the wastewater to a safe level. In this study, it has been conducted to remove the impurities using a decontamination wastewater surrogate, and a treatment process of the HyBRID decontamination wastewater has been established. The performance and applicability of the treatment process have been verified through 1 L scale of replicates and a pilot scale (300 L/batch) test.

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

Gamma Irradiation Induced Transcriptional Repression of the Gibberellin Acid Regulating Genes in Arabidopsis Plants

  • Kim, Jin-Baek;Goh, Eun Jeong;Ha, Bo-Keun;Kim, Sang Hoon;Kang, Si-Yong;Jang, Cheol Seong;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.281-287
    • /
    • 2012
  • The model plant, Arabidopsis thaliana is the subject of an international genome research project. Massive doses of ionizing radiation have been shown to induce physiological changes in plants. The wild-type (Ler) Arabidopsis plants were irradiated with 100 Gy and 800 Gy of gamma-ray. Gibberellin (GA) affects developmental processes and responses according to the various environment conditions in diverse plant. The 13 GA isomers were analyzed at vegetative (VE) and reproductive (RE) stages by HPLC. Total GA contents were reduced with the increase in radiation doses at VE and RE stages. Specifically, levels of GA3, GA4, GA12, and GA34 were significantly reduced with the increase of radiation doses. Oligonucleotide microarrays analysis was performed with Arabidopsis plants at different developmental stages and doses of gamma-ray. Through the microarray data, we isolated 41 genes related to GA biosynthesis and signaling transduction. Expression of these genes was also decreased as the reduction of GA contents. Interestingly, in GA signaling related gene expression, gibberellin-responsive protein, putative (At2g18420) was down-regulated at VE and RE stages. Myb21 (At3g27810), Myb24 (At5g40350), and Myb57 (At3g01530) was down-regulated at RE stage. In GA biosynthesis related gene expression, YAP169 (At5g07200) and GA20ox2 (At5g51810) were down-regulated at 100 Gy treatment of VE stage and 800 Gy treatment of RE stage in cytoplasm, respectively. However, exceptively, GA3ox2 (At1g80340) was up-regulated at 100 Gy treatment of RE stage in cytoplasm. In this study, the wild type (Ler) Arabidopsis plants showed differences in response with development stage at the various doses of gamma-rays. GA contents change was reported in gamma irradiated plant.

Development of Hardware In the Loop System for Cyber Security Training in Nuclear Power Plants (원자력발전소 사이버보안 훈련을 위한 HIL(Hardware In the Loop) System 개발)

  • Song, Jae-gu;Lee, Jung-woon;Lee, Cheol-kwon;Lee, Chan-young;Shin, Jin-soo;Hwang, In-koo;Choi, Jong-gyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.4
    • /
    • pp.867-875
    • /
    • 2019
  • Security awareness and training are becoming more important as cyber security incidents tend to increase in industrial control systems, including nuclear power plants. For effective cyber security awareness and training for the personnel who manage and operate the target facility, a TEST-BED is required that can analyze the impact of cyber attacks from the sensor level to the operation status of the nuclear power plant. In this paper, we have developed an HIL system for nuclear power plant cyber security training. It includes nuclear power plant status simulations and specific system status simulation together with physical devices. This research result will be used for the specialized cyber security training program for Korean nuclear facilities.