• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.027 seconds

The Estimation of Neutron Fluence in Nuclear Reactor Vessel Materials by the Analysis of Ultrasonic Characteristics (초음파특성 분석에 의한 원자로 재료의 중성자 조사량 예측)

  • Lee, Sam-Lai;Chang, Kee-Ok;Kim, Byoung-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.307-312
    • /
    • 2001
  • Ultrasonic signals from Charpy impact test specimen have been analyzed in order to evaluate the integrity of reactor pressure vessel. Base and weld metal that were extracted from reactor vessel doting plant outages according to the schedule of the surveillance test required by the related regulations have been used and the ultrasonic test parameters including velocity, attenuation, etc. showed a close correlations with the amount of neutron irradiation for base metal, relatively homogeneous materials. This result showed certain possibility where a nondestructive method could be used to predict the fluence of the Irradiation due to neutron in nuclear reactor vessel materials.

  • PDF

The Evaluation of Fracture Toughness for Woven Carbon Fibered Reinforced Composite Materials (평직 탄소섬유강화 복합재료의 파괴인성평가)

  • Park, Hong-Sun;Lee, Woo-Hyung;Keum, Jin-Hwa;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.69-76
    • /
    • 2010
  • This study examined how the fracture toughness is affected according to the variation of the initial crack length and the fiber arranged angle using FEA method and experimental method. Therefore, the energy release rates were calculated and compared by J-integral method and VCCT(Virtual Crack Closure Technique). The results of fracture toughness test verified these results. At this time, the locus method was used in order to determine the energy release rate. When the results of FEA were compared with those of experiment, all of those decreased with the increase of angle between load and the fiber arranged direction. The decrease was due to reducing maximum load and stiffness, and the reason of reduction has been judged that the inplane shear stress.

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate (SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구)

  • Joo, Hyun Jong;Kim, Sung Chul;Lee, Kwang Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

Anaerobic Digester Gas Purification for the Fuel Gas of the Fuel Cell (연료전지 연료가스인 하수처리장 소화가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho;Park, Kyu-Ho;Choi, Doo-Sung;Park, Jae-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • The Tancheon wastewater treatment plant(WWTP) in Seoul using anaerobic digestion to reduce the outlet sludge produces anaerobic digester gas which contains 65% $CH_4$ and 35% $CO_2$. The gas purification equipment was installed and operated to use Anaerobic Digester Gas(ADG) as a fuel for molten carbonate fuel cell(MCFC). The processes consist of the desulfurizer and the adsorption tower to remove $H_2S$ and siloxane in the gas. The gas purification equipment removed virtually over 95% of $H_2S$ and over 99% of siloxane. Results has demonstrated that the fuel cell can produce electrical output and hot water with negligible air emissions of CO, NOx and $SO_2$. The site provides the first opportunity in Korea for demonstrating Molten carbonate fuel cell(MCFC) which the digester gas was applied to the fuel gas.

CHARACTERISTICS OF FABRICATED SiC RADIATION DETECTORS FOR FAST NEUTRON DETECTION

  • Lee, Cheol-Ho;Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Park, Hyeon-Seo;Kim, Gi-Dong;Park, June-Sic;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.70-74
    • /
    • 2012
  • Silicon carbide (SiC) is a promising material for neutron detection at harsh environments because of its capability to withstand strong radiation fields and high temperatures. Two PIN-type SiC semiconductor neutron detectors, which can be used for nuclear power plant (NPP) applications, such as in-core reactor neutron flux monitoring and measurement, were designed and fabricated. As a preliminary test, MCNPX simulations were performed to estimate reaction probabilities with respect to neutron energies. In the experiment, I-V curves were measured to confirm the diode characteristic of the detectors, and pulse height spectra were measured for neutron responses by using a $^{252}Cf$ neutron source at KRISS (Korea Research Institute of Standards and Science), and a Tandem accelerator at KIGAM (Korea Institute of Geoscience and Mineral Resources). The neutron counts of the detector were linearly increased as the incident neutron flux got larger.

A STUDY ON INDUSTRIAL GAMMA RAY CT WITH A SINGLE SOURCE-DETECTOR PAIR

  • Kim Jong-Bum;Jung Sung-Hee;Kim Jin-Sup
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2006
  • Having its roots in medical applications, industrial gamma ray CT has opened up new roads far investigating and modeling industrial processes. Using a line of research related to industrial gamma ray CT, the authors set up a system of single source and detector gamma transmission tomography for wood timber and a packed bed phantom. The hardware of the CT system consists of two servo motors, a data logger, a computer, a radiation source and a radiation detector. One motor simultaneously moves the source and the detector for a parallel beam scanning, whereas the other motor rotates the scan table at a preset projection angle. The image is reconstructed from the measured projections by the filtered back projection method. The phantom was designed to simulate a cross section of a packed bed with a void. The radiation source was 20mCi of Cs-137 and the detector was a 1 inch $\times$ 1 inch NaI (TI) scintillator shielded by a lead collimator. The experimental gamma ray CT image has sufficient resolution to reveal air holes and the density distribution inside the phantom. The system could possibly be applied to a packed bed column or a pipe flow in a petrochemical plant.

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by NDT Method

  • Park, Kwang-June;Park, Yoon-Kyu;Kim, Eun-Ka
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.680-686
    • /
    • 1995
  • It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors ill the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses.

  • PDF

THE PREDICTION OF pH BY GIBBS FREE ENERGY MINIMIZATION IN THE SUMP SOLUTION UNDER LOCA CONDITION OF PWR

  • Yoon, Hyoungju
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • It is required that the pH of the sump solution should be above 7.0 to retain iodine in a liquid phase and be within the material compatibility constraints under LOCA condition of PWR. The pH of the sump solution can be determined by conventional chemical equilibrium constants or by the minimization of Gibbs free energy. The latter method developed as a computer code called SOLGASMIX-PV is more convenient than the former since various chemical components can be easily treated under LOCA conditions. In this study, SOLGASMIX-PV code was modified to accommodate the acidic and basic materials produced by radiolysis reactions and to calculate the pH of the sump solution. When the computed pH was compared with measured by the ORNL experiment to verify the reliability of the modified code, the error between two values was within 0.3 pH. Finally, two cases of calculation were performed for the SKN 3&4 and UCN 1&2. As results, pH of the sump solution for the SKN 3&4 was between 7.02 and 7.45, and for the UCN 1&2 plant between 8.07 and 9.41. Furthermore, it was found that the radiolysis reactions have insignificant effects on pH because the relative concentrations of HCl, $HNO_3$, and Cs are very low.