• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.026 seconds

Development of Engineering Program for APR1400 Feedwater Supplying System (APR1400 급수공급계통 엔지니어링 프로그램 개발)

  • Yeom, Dong Un;Ju, Tae Young;Hyun, Jin Woo
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.12-22
    • /
    • 2017
  • Korea Hydro & Nuclear Power Co. (KHNP) has implemented engineering programs for operating nuclear power plants. Engineering programs are maintenance rule (MR), functional importance determination (FID), single point vulnerability (SPV) and functional equipment group (FEG). Recently, KHNP has developed engineering programs for APR1400 feedwater supplying system to establish the advanced engineering system and will verify the suitability of engineering programs through implementing in new nuclear power plant. Consequently, it is expected that the reliability of APR1400 feedwater supplying system will be improved by implementing engineering programs.

Categorization of Motor Operated Valve Safety Significance for Its Periodic Safety Verification (모터구동 밸브 주기적 안전성 확인을 위한 중요도 분류)

  • Sung, Tae-Young;Kim, Kil-Yoo;Kang, Dae-Il
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.92-99
    • /
    • 2002
  • Safety-related motor operated valve(MOV) safety significance for Ulchin Unit 3 was categorized. The safety evaluation of MOV of domestic nuclear power plants affects the generic data used for the quantification of MOV common cause failure(CCF) events in Ulchin Units 3&4 PSA. Therefore, in this paper, MGL(multiple greek letter)parameter ${\beta}$, used for the evaluation of MOV CCF probabilities in Ulchin Units 3&4 probabilistic safety assessment(PSA), was re-estimated and the MOV safety significance was categorized. The re-estimation results of MGL parameter show that the value of(is decreased by 30% compared with the current value used in Ulchin Unit 3&4 PSA. The categorization results of MOV safety significance using the changed value of MGL parameter(show that the number of HSSCs(high safety significant components) is decreased by 54.5% compared with those using the current value of it used in Ulchin Units 3&4 PSA.

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi;Wi, Jun;Park, Jin-Kyu;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Transmutation of Am-241, 243 and Cm-244 in a Conventional Pressurized Water Reactor

  • Koh, Duck-Joon;Lee, Myung-Chan;Jeong, Woo-Tae;Boris P. Kochurov
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.423-428
    • /
    • 1996
  • The feasibility study on burning Am-241, 243 and Cm-244 nuclides in a conventional PWR (Pressurized Water Reactor) was carried out by using the TRIFON code that was developed by the Institute of Theoretical and Experimental Physics in Russia in 1992. TRIFON code uses updated ABBN Russian nuclear cross section library. The reference reactor is the Korea nuclear power plant unit 8 (YGN 2). The burning effect of Am-241, 243 and Cm-244 nuclides was studied with UO$_2$(3.5 w/o)fuel assembly and MOX (4.44 w/o) fuel assembly. The loaded mass ratio of Am-241, 243 and Cm-244 nuclides was obtained from the mass ratio of Am-241, 243 and Cm-244 nuclides in 10 year cooling spent fuel with average discharge burnup of 33 GWD/MTU. The effective transmutation rates of Am-241, 243 and Cm-244 nuclides in UO$_2$ fuel assembly were found to be higher than those in MOX fuel assembly. The result from TRIFON code was compared to that from CASMO-3/NEM-3D code system. For more reliable calculation of transmutation for MA(Minor Actinides) more sophisticated decay chain scheme of MA should be investigated and nuclear cross section library of MA should be considerably improved.

  • PDF

Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants (원전 적용을 위한 면진장치의 성능기반 설계 변위 추정)

  • Kim, Jung Han;Choi, In-Kil;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube (증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동)

  • Shin, Jung-Ho;Lim, Sang-Yeop;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

NEW WALL DRAG AND FORM LOSS MODELS FOR ONE-DIMENSIONAL DISPERSED TWO-PHASE FLOW

  • KIM, BYOUNG JAE;LEE, SEUNG WOOK;KIM, KYUNG DOO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.416-423
    • /
    • 2015
  • It had been disputed how to apply wall drag to the dispersed phase in the framework of the conventional two-fluid model for two-phase flows. Recently, Kim et al. [1] introduced the volume-averaged momentum equation based on the equation of a solid/fluid particle motion. They showed theoretically that for dispersed two-phase flows, the overall two-phase pressure drop by wall friction must be apportioned to each phase, in proportion to each phase fraction. In this study, the validity of the proposed wall drag model is demonstrated though one-dimensional (1D) simulations. In addition, it is shown that the existing form loss model incorrectly predicts the motion of the dispersed phase. A new form loss model is proposed to overcome that problem. The newly proposed form loss model is tested in the region covering the lower plenum and the core in a nuclear power plant. As a result, it is shown that the new models can correctly predict the relative velocity of the dispersed phase to the surrounding fluid velocity in the core with spacer grids.

Reduction of the Foam Generated in the Discharge Channel of a Power Plant (발전소 배수로에서 발생하는 거품 저감 방법)

  • Oh, Young-Min;Oh, Sang-Ho;Jang, Se-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.235-240
    • /
    • 2010
  • The foam produced by the effluent cooling water which is released to the discharge channel provokes civil complaints due to the visual pollution to the neighboring residents. In this study, a physical model test was conducted by placing tetrapods on the bottom slope of the discharge channel in order to suggest an effective method of reducing the amount of generated foam. Field application of the main results of the model test showed qualitatively apparent reduction of the foam generation at the discharge channel.

Development of an Entrainment Model for the Steam Line Break Mass and Energy Release Analysis

  • Park, Young-Chan;Kim, Yoo
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • The purpose of this study is to develop an entrainment model of the Pressurized Water Reactor (PWR) U-tube Steam Generator (SG) for Main Steam Line Break (MSLB) analyses. Generally, the temperature of the inside containment vessel at MSLB is decreased by introducing the liquid entrainment effect. This effect makes a profit on the aspect of integrity evaluation for Equipment Environmental Qualification (EEQ) in the containment. However, the target plant, Kori unit 1 does not have the entrainment data. Therefore, this study has been performed. RETRAN-3D and LOFTRAN computer programs are used for the model development. There are several parameters that are used for the initial benchmark, such as Combustion Engineerings (CE) experimental data and the RETRAN-3D model which describes the test leg. A sensitivity study is then performed with this model in which the model parameters are varied until the calculated results provide reasonable agreement with the measured results for the entire test set. Finally, a multiplication factor has been obtained from the 95/95 values of the calculated (best-estimate) quality data relative to the measured quality data. With this new methodology, an additional temperature margin of about 40$^{\circ}C$ can be obtained. So, the new methodology is found to have an explicit advantage to EQ analyses.

Numerical Study for Configuration Design in the Exhaust Gas Cooling System (배출가스 냉각장치 형상설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.7-12
    • /
    • 2016
  • This paper deals with a parametric study on cooling channel configurations to enhance the cooling effect. As a cooling effect has been increased, the exhaust gas by the plant from a manufacture is becoming deceased. To solve this problem, the design of a efficient cooling system is needed. In this paper, the cooling channel was analyzed to improve the cooling performance. The heat transfer rates depending on the number of baffle and the heiht of fin were obtained by using numerical simulation method. Three-dimensional Reynolds-averaged Naiver-Stokes equations were used to estimate flow and heat transfer in cooling channel, and the $k-{\varepsilon}$ model for turbulence closure was employed.