• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.03 seconds

Model for Transport of Accidently Released Radionuclides onto Rice-Fields and its Comparison with Experimental Data (사고시 논으로 유출된 핵종 이동 모델 및 실험결과와의 비교)

  • Keum, Dong-Kwon;Lee, Han-Soo;Choi, Heui-Joo;Kang, Hee-Suk;Lim, Kwang-Muk;Choi, Young-Ho;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2004
  • A dynamic compartment model was developed to evaluate the transport of accidently released radionuclides onto rice-fields. In the model, the surface water compartment and shoot-base absorption were introduced to account for the effect of irrigation, which is essential to a rice cultivation. The soil mixing by plough and irrigation before transplanting rice was also considered, and the rate of root-uptake and shoot-base absorption were modeled in terms of the function of biomass. In order to test the validation of the model, it was applied to the analysis of some simulated $^{137}Cs$ deposition experiments that were performed while cultivating rice in a greenhouse using soils sampled from rice-fields around Kori, Yonggwang and Ulchin nuclear power plants. The model prediction was generally agreed within about one order of magnitude with experimental data.

Optimization of Operating Conditions for a 10 kW SOFC System (10kW급 건물용 고체산화물연료전지(SOFC) 시스템 모델을 이용한 운전조건 최적화 연구)

  • LEE, YULHO;YANG, CHANUK;YANG, CHOONGMO;PARK, SANGHYUN;PARK, SUNGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.49-62
    • /
    • 2016
  • In this study, a solid oxide fuel cell (SOFC) system model including balance of plant (BOP) for building electric power generation is developed to study the effect of operating conditions on the system efficiency and power output. SOFC system modeled in this study consists of three heat-exchangers, an external reformer, burner, and two blowers. A detailed computational cell model including internal reforming reaction is developed for a planer SOFC stack which is operated at intermediate temperature (IT). The BOP models including an external reformer, heat-exchangers, a burner, blowers, pipes are developed to predict the gas temperature, pressure drops and flow rate at every component in the system. The SOFC stack model and BOP models are integrate to estimate the effect of operating parameters on the performance of the system. In this study, the design of experiment (DOE) is used to compare the effects of fuel flow rate, air flow rate, air temperature, current density, and recycle ratio of anode off gas on the system efficiency and power output.

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

A Study on the Flux and Heat Transfer of Direct Contact Type Module Applied for a Pilot Scale Membrane Distillation Process (파일럿 규모 막 증발 공정 적용을 위한 직접 접촉식 모듈의 투과유속 및 열에너지 이동에 관한 연구)

  • Kim, Seung Hwan;Kim, Se Woon;Lee, Dong Woo;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat $3m^3/day$ of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.

Reduction of Skin Allergy of Rhus verniciflua Sap Utilizing Radiation Technology (방사선 기술을 이용한 옻나무 수액의 피부 알러지 저감화 효과)

  • Jeong, Il Yun;Park, Yong Dae;Jin, Chang Hyun;Choi, Dae Seong;Byun, Myung-Woo;Ryu, Hyung Won;Kim, Dong Yong;Baek, Ji Yeong
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • Skin contact allergy (SCA) is not life-threatening, but a large number of people have been suffered from the reactions caused by various kinds of chemicals and products. Thus, in this study, radiation technology was employed to improve the traditional herb addition method on the SCA reduction of Rhus verniciflua sap (RVS). Rhus verniciflua has traditionally been used as an herbal medicine plant, but its urushiol derivatives are known as a major allergen for the SCA. The present study was commenced to assess the allergenicity of both gamma-irradiated and non-irradiated RVS by using guinea-pig maximization test (GPMT) in order to probe the mechanism of an SCA. In the acute dermal irritation assays, non-irradiated RVS caused erythema, but the irradiated RVS did not provoke any erythema on the abdominal skin of the guinea pigs. From the result of the GPMT, urushiols, the main chemical components of RVS, were identified as an extreme skin sensitizer, and the removal of urushiols by irradiation extremely reduced the erythema. These results suggest that radiation technology is a novel method to reduce SCA through the removal of urushiols of RVS.

Expression Analysis of Flower Color Related Genes in Spray-type 'ARTI-purple' Developed by Gamma-ray Mutagenesis (감마선 변이체 스프레이 국화 'ARTI-purple'의 화색 관련 유전자 발현 분석)

  • Sung, Sang Yeop;Lee, Yu-Mi;Kim, Sang Hoon;Ha, Bo-Keun;Kang, Si-Yong;Kim, Jin-Baek;Kim, Hong Gi;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • Anthocyanins are major plant pigment and produced through phenylpropanoid pathway. In this study, anthocyanin biosynthesis mechanisms of chrysanthemum flowers were studied using 'Argus' and flower color mutant 'ARTI-purple' which were induced by 40 Gy gamma irradiation ($Co^{60}$). And, three chrysanthemums, 'Ford', 'Yeonja' and 'Orando' were additionally used as the check varieties to understand the relationship between flower color and expression patterns of genes. The expression patterns of the anthocyanin biosynthetic genes were matched with the flower color of the check varieties. High anthocyanin concentration of 'Orando' showed the high expression of anthocyanin biosynthetic genes. In the white flower of 'Ford', expressions of CHI, DFR and ANS were not identified. Despite different flower color, 'Argus' and 'ARTI-purple' showed different expression patterns compared with the check varieties. From the dot blot analysis, we screened the seven genes showing the different expressions between 'Argus' and 'ARTI-purple'.

The analysis of solar radiation to solar plant area based on UAV geospatial information system (UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.5-14
    • /
    • 2018
  • Recently the construction of solar plant showed a steady growth in influence of renewable energy policy. It is very important to determine the optimal location and aspect of solar panel using analyzed data of solar radiation to solar plant area beforehand. This study analyzed solar radiation in solar plant area using DEM acquired from UAV geospatial information. Mean solar radiation of 2017 was calculated as $1,474,466W/m^2$ and total solar radiation of 2017 considering solar plant area showed $33,639MW/m^2$ on analyzed result. It is important to analyze monthly solar radiation in aspect of maintenance works of solar plant. Monthly solar radiation of May to July was calculated over $160,000W/m^2$ and that of January to February and November to December showed under $80,000W/m^2$ in monthly solar radiation analysis of solar plant area. Also this study compared with solar radiation being calculated from UAV geospatial information and that of National Institute of Meteorological Sciences. And mean solar radiation of study area showed a little high in comparison with whole country data of National Institute of Meteorological Sciences, because the 93.7% of study area was composed of south aspect. Therefore this study can be applied to calculate solar radiation in new developed solar plant area very quickly using UAV.

Evaluate spent mushroom substrate for raising bed soil of rice (버섯 수확 후 배지의 수도용 상토로써의 활용가능성 평가)

  • Oh, Tae-Seok;Park, Youn Jin;Kim, Tae-Kwon;Kim, Chang-Ho;Cho, Yong-Koo;Kim, Seong-Min;Shin, Dong-Il;Koo, Han-Mo;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.250-255
    • /
    • 2015
  • In this study spent mushroom substrate has ingredient raising rice bed soil. spent mushroom substrates are organic content is 60.72% were nitrogen - phosphoric acid - potassium is 1.39 - 0.89 - 0.81% of the chemical characteristics determine. Post-harvested mushroom substrates of the stabilization process, the temperature of the 20 days time progress in the pH of the rise and fall of temperature down were germination index also 77, as identified, Spent mushroom substrate bed soil for raising rice Ingredient to take advantage of the 20 days or more stabilization process needed to be investigated. Rice seed germination characteristic is in the common bed soil for raising rice ingredients manufactured control group and the comparison in spent mushroom substrate is 10% or less of a mixed experimental population of the germination rate is 82% was more than average days to germination and germination energy, even a statistical significant difference is or control group than good level was ok. Growth initial also spent mushroom substrate is 10% or less of a mixed experimental population of shoot dry matter (top) and grave less than control group higher as confirmed spent mushroom substrates are bed soil for raising rice ingredients are likely to take advantage of the high, as was the judge.

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.