• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.033 seconds

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

A Review of Technology Development Trend for Hydrogen and Syngas Production with Coke Oven Gas (코크스 오븐 가스(COG)를 이용한 수소 및 합성가스 제조 기술 개발 동향 분석)

  • Choi, Jong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1247-1260
    • /
    • 2022
  • The steel industry accounts for about 5% of the total annual global energy consumption and more than 6% of the total anthropogenic carbon dioxide emissions. Therefore, there is a need to increase energy efficiency and reduce greenhouse gas emissions in these industries. The utilization of coke oven gas, a byproduct of the coke plant, is one of the main ways to achieve this goal. Coke oven gas used as a fuel in many steelmaking process is a hydrogen-rich gas with high energy potential, but it is commonly used as a heat source and is even released directly into the air after combustion reactions. In order to solve such resource waste and energy inefficiency, several alternatives have recently been proposed, such as separating and refining hydrogen directly from coke oven gas or converting it to syngas. Therefore, in this study, recent research trends on the separation and purification of hydrogen from coke oven gas and the production of syngas were introduced.

Considerations of the Optimized Protective Action Distance to Meet the Korean Protective Action Guides Following Maximum Hypothesis Accidents of Major KAERI Nuclear Facilities

  • Goanyup Lee;Hyun Ki Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.52-57
    • /
    • 2023
  • Background: Korea Atomic Energy Research Institute (KAERI) operates several nuclear research facilities licensed by Nuclear Safety and Security Commission (NSSC). The emergency preparedness requirements, GSR Part 7, by International Atomic Energy Agency (IAEA) request protection strategy based on the hazard assessment that is not applied in Korea. Materials and Methods: In developing the protection strategy, it is important to consider an accident scenario and its consequence. KAERI has tried the hazard assessment based on a hypothesis accident scenario for the major nuclear facilities. During the assessment, the safety analysis report of the related facilities was reviewed, the simulation using MELCOR, MACCS2 code was implemented based on a considered accident scenario of each facility, and the international guidance was considered. Results and Discussion: The results of the optimized protective actions were 300 m evacuation and 800 m sheltering for the High-Flux Advanced Neutron Application Reactor (HANARO), the evacuation to radius 50 m, the sheltering 400 m for post-irradiation examination facility (PIEF), 100 m evacuation or sheltering for HANARO fuel fabrication plant (HFFP) facility. Conclusion: The results of the optimized protective actions and its distances for the KAERI facilities for the maximum postulated accidents were considered in establishing the emergency plan and procedures and implementing an emergency exercise for the KAERI facilities.

An Investigation of Fire Human Reliability Analysis (HRA) Factors for Quantification of Post-fire Operator Manual Actions (OMA) (화재 후 운전원수동조치(OMA) 정량화를 위한 화재 인간신뢰도분석 (HRA) 요소에 대한 고찰)

  • Sun Yeong Choi;Dae Il Kang;Yong Hun Jung
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.72-78
    • /
    • 2023
  • The purpose of this paper is to derive a quantified approach for Operator Manual Actions (OMAs) based on the existing fire Human Reliability Analysis (HRA) methodology developed by the Korea Atomic Energy Research Institute (KAERI). The existing fire HRA method was reviewed, and supplementary considerations for OMA quantification were established through a comparative analysis with NUREG-1852 criteria and the review of the existing literature. The OMA quantification approach involves a timeline that considers the occurrence of Multiple Spurious Operations (MSOs) during a Main Control Room Abandonment (MCRA) determination and movement towards the Remote Shutdown Panel (RSP) in the event of a Main Control Room (MCR) fire. The derived failure probability of an OMA from the approach proposed in this paper is expected to enhance the understanding of its reliability. Therefore, it allows moving beyond the deterministic classification of "reliable" or "unreliable" in NUREG-1852. Also, in the event of a nuclear power plant fire where multiple OMAs are required within a critical time range, it is anticipated that the OMA failure probability could serve as a criterion for prioritizing OMAs and determining their order of importance.

Laser beam decontamination of metallic surfaces with a pulsed (150 W) Nd: YAG laser

  • Anne-Maria Reinecke;Margret Acker;Steffen Taut;Marion Herrmann;Wolfgang Lippmann;Antonio Hurtado
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4159-4166
    • /
    • 2023
  • Laser decontamination of radioactive surfaces is an innovative technology. Our contribution to improving this technology includes studies on laser beam decontamination with a pulsed laser of an average power of 150 W, equipped with a hand guided working head. Our investigations are focused on metallic surfaces typical in nuclear power plants, such as stainless steel, bright and rusted mild steel, galvanized steel, and painted steel. As typical nuclides of contaminated surfaces we chose Co-60 and Cs-137, the most frequently occurring nuclides in many nuclear plant components; Sr-85 as a representative of Sr-90, the potentially most harmful fission nuclide; and Am-241 as a representative of the minor alpha-radiation emitting actinides. Here, we present our results of decontamination and recovery ratios. Decontamination ratios of 90-100% were achieved on different surfaces.

Multi-unit PSA based risk evaluation framework for utilizing cross-tie systems for nuclear power plants

  • Jong Woo Park;Ho-gon Lim;Jae Young Yoon;Seong Woo Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4296-4306
    • /
    • 2024
  • The Fukushima accident showed that the safety of multiple nuclear power plants (NPPs) at the same site could be jeopardized simultaneously. Since then, many studies have focused on developing strategies to prevent the spread of multi-unit accidents, with numerous countries establishing strategies to use mobile equipment. However, mobile equipment strategies are inherently accompanied by a high degree of uncertainty regarding operation success and duration because multiple organizations and personnel interact in various ways during multi-unit accident situations. Furthermore, supplementing current fixed equipment with additional mobile equipment requires extra resources. Therefore, cross-tie strategies that use currently installed fixed equipment can provide additional means to manage site risk with relatively few additional costs. This study proposes a multi-unit probabilistic safety assessment-based risk evaluation framework for utilizing cross-tie systems in NPPs and a modeling methodology to quantify the effectiveness of the cross-tie strategies. A case study was conducted to evaluate the risk reduction from using cross-tie strategies for emergency diesel generators and alternate AC diesel generators, which are power systems utilized in multi-unit loss of offsite power initiating events. It is expected that the developed framework and methodology can be utilized for other types of cross-tie strategies as well.

A Study of Energy Security Cooperation and its Integration Potential in South America through Brazilian Leadership (남미지역 에너지안보 협력과 통합 가능성 연구 : 브라질의 리더십 역할 고찰)

  • Ha, Sang-Sub
    • Journal of International Area Studies (JIAS)
    • /
    • v.15 no.1
    • /
    • pp.83-108
    • /
    • 2011
  • South America has vast energy resources with the renewable and non-renewable sources. However, many countries in the region are unable to guarantee adequate energy security both of energy supply and demand. Currently the possibility of energy security is high through regional energy integration based on the potential economic benefits. The difference of regulation system with the individual countries in the region impose strong barriers to integration process. Security of energy supply and its demand as well is fundamental issues in this region and regional energy cooperation is essential for getting rid of the insecurity of energy supplies. Despite of this problem, currently Latin American countries made a great effort to make multilateral energy security regime through projecting great energy infrastructure network(e.g. IIRSA) or mechanism especially in South America, which can give countries access to the region's reserve supplies by providing regulations and pricing mechanism with a shared energy market in this region. Brazil's active leading in the formulation of such movement toward energy security integration and participation of energy infrastructure network is good initiative to enforce this great energy security change. Politically and economically, Brazil's geographical position and the level of market size and oil and natural gas resources, in addition the leadership in renewable energy sources make it a sound candidate to take over the coordination of the secure integration of region's energy market. However, on the conditions of existing many obstacles such as, control of the output of the region's power plant, energy flows, the environmental matter within local community must be overcome to make more advance process and steps. Finally, to secure more institutional approach, this region must settle regional disputes resolution regime urgently.

The Effects of LED Light Quality on Foliage Plants Growths in Interior Environment (실내에서 LED광질이 관엽식물의 생장에 미치는 영향)

  • Kim, Myung-Seon;Chae, Soo-Cheon;Lee, Myung-Won;Park, Gab-Soon;Ann, Seoung-Won
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1499-1508
    • /
    • 2013
  • In the results of investigating the role of LED light quality in enhancing the ornamental value of indoor foliage plants, amber and red light increased plant height, leaf width, and leaf stalk, and the consequent tree shape decreased the ornamental value. The chlorophyll content increased significantly under white light and compound light. With regard to the effect of plant leaf color on ornamental value, the value of lightness was markedly enhanced by red light. As to the functionality of plants according to photosynthetic activity, plants such as Dieffenbachia, Clusia, and Dracaena were found favorable to those staying indoors for a longtime from morning to evening. Spathiphyllum, and Ficus were found to be recommendable for indoor spaces used actively during afternoon because their photosynthesis was activated in the afternoon. With regard to power consumption according to light quality, white light consumed 119 W/hour, around 45% lower than that of fluorescent lamps, so it is considered the optimal artificial light quality that can enhance energy efficiency. Red light consumed 72 W/hour, only 33% of that of fluorescent lamps, but it was not considered the optimal light quality because plant growth was poor under the light quality. White light and compound light were found to be the ideal light sources for improving the functionality and ornamental value of indoor plants and reducing the cost of maintenance, but because compound light hinders people from recognizing the original color of plants and makes their eyes easily tired, white light was considered the optimal light satisfying all of the ornamental value, economic efficiency and functionality resulting from plant growth.

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF