• Title/Summary/Keyword: Energy plant

Search Result 3,893, Processing Time 0.028 seconds

Development of Maintenance Effectiveness Monitoring Program for APR1400 Safety Related Systems (APR1400 안전관련계통 정비효과감시 프로그램 개발)

  • Yeom, Dong Un;Hyun, Jin Woo;Song, Tae Young
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • Korea Hydro & Nuclear Power Co. (KHNP) has developed and implemented the maintenance effectiveness monitoring (MR) programs for the operating nuclear power plants. MR programs are developed by reflecting design characteristics of the operating nuclear power plants to monitor the plant performance for improving the safety and reliability. Recently, KHNP has developed the MR program for APR1400 safety related systems to establish the advanced maintenance system and will verify the suitability of the MR program through evaluating initial performance. Consequently, it is expected that the safety of the new plant will be improved by developing and implementing the MR program.

Application of Horizontal Flow Fins Inclined Plate for Sedimentation Efficiencies Improvement in River Water with High Turbidity (고탁도 원수의 침전효율 증대를 위한 수평류식 핀 경사판 적용에 관한 연구)

  • Choi, Jung-Su;Jin, Oh-Suk;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.644-650
    • /
    • 2012
  • The purpose of this study is to evaluate the applicability of Horizontal Flow Fins Inclined Plate (HFIP) for the removal of high-turbidity raw water in water treatment plant. As an experimental result, treated water quality and removal efficiency were 0.34 NTU and 90.45% by the application of HFIP for low-turbidity raw water and for the high-turbidity influent resulted 0.75 NTU and 97.27% in removal efficiency. In view of stability for discharge water NTU, the standard deviation were found as 0.12 NTU for low-turbidity and 0.75 NTU for high-turbidity raw water indicating low fluctuations. Result of flow analysis using CFD (Computational Fluid Dynamic) that the addition of HFIP improves the turbidity treatment followed by the stabilization of flow velocity distribution and increases in settling velocity.

Optimal Hot Water Extraction Conditions of Mixed Herbs Extract Mixture Using Response Surface Methodology

  • Park, Tae-Young;Oh, Junseok;Hong, Jae-Heoi;Hong, Seong-Eun;Hong, Seong-Min;Oh, Hyeon-Min;Park, Gyeong-Su;Jeong, Hee Gyeong;Kim, Kyung Je;Jin, Seong Woo;Koh, Young Woo;Im, Seung Bin;Ha, Neul-I;Seo, Kyoungsun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.106-106
    • /
    • 2019
  • Human needs energy to maintain metabolisms, and these energy sources were uptake foods or nutritions. The most effective source was known for glucose among the nutrients, furthermore the glucose is an important source of energy for blood cells and control brain maintenences cells. But as food is plentiful and eating habits become more westernized, fast food and irregular meal times by works. Nowadays, diabetes were rapidly increased by malnutriton and obesity. Diabetes was the sixth highest on the list of causes of death in Korea, released by the Statistics Korea in 2015, which is considered a serious social problem for adult diseases. Therefore, this study aims to establish the optimal hot water extraction conditions of mixed herbs extract mixture compounds that are effective in diabetes. The independent factors were extraction temperature (X1: $40-120^{\circ}C$), extraction time (X2: 2-10 hrs.), and the ratio of water to sample (X3: 40-200 mg/mL). Their effects were assessed on dependent variables of the extract properties, which included soluble solid contents, Brix of sample extract, total polyphenols content, total flavonoids content and DPPH Radical scavenging activity. As a result, the content of total polyphenol content was the highest in No.12(6 hrs, $120^{\circ}C$, 67 mg/mL) and the highest total flavonoid contents was found in No.16(6 hrs, $80^{\circ}C$, 40 mg/mL). DPPH Radical scavenging activity showed the highest activity in No.7(8 hrs, $100^{\circ}C$, 100 mg/mL).

  • PDF

Seismic Fragility Analysis Considering the Inelastic Behavior of Equipment Anchorages for High-Frequency Earthquakes (고진동수 지진에 대한 기기 정착부의 비탄성 거동을 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jung, Jae-Wook;Kim, Seokchul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.261-266
    • /
    • 2021
  • Nuclear power plants in Korea were designed and evaluated based on the NRC's Regulatory Guide 1.60, a design response spectrum for nuclear power plants. However, it can be seen that the seismic motion characteristics are different when analyzing the Gyeongju earthquake and the Pohang earthquake that has recently occurred in Korea. Compared to the design response spectrum, seismic motion characteristics in Korea have a larger spectral acceleration in the high-frequency region. Therefore, in the case of equipment with a high natural frequency installed in a nuclear power plant, seismic performance may be reduced by reflecting the characteristics of domestic seismic motions. The failure modes of the equipment are typically structural failure and functional failure, with an anchorage failure being a representative type of structural failure. In this study, comparative analyses were performed to decide whether to consider the inelastic behavior of the anchorage or not. As a result, it was confirmed that the seismic performance of the anchorages could be increased by considering the inelastic behavior of an anchorage.

Derivation of Candidate Sites for a Tidal Current-Pumped Storage Hybrid Power Plant Using GIS-based Site Selection Analysis (GIS기반 적지분석을 통한 조류-양수 융합발전시스템 설치후보지 도출 연구)

  • LEE, Cholyoung;CHOI, Hyun-Woo;PARK, Jinsoon;KIM, Jihoon;PARK, Junseok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.184-207
    • /
    • 2020
  • This study aimed to determine candidate areas for tidal current-pumped storage hybrid power plants using GIS-based site selection analysis. The study area is the southwestern sea surrounding Jindo Island in South Korea. Factors to be considered for the site selection analysis were derived considering the design and installation characteristics of the hybrid power plant. Numerical simulation to predict tidal speed was performed using the MOHID(Modelo HIDrodin?mico) and the results were converted into spatial data. Subsequently, a GIS-based overlay analysis method proposed in this study was applied to derive the installation candidate area. A total of 10 regions were identified as candidate sites. Among them, it was determined that the power generator could be installed in relatively wide sea areas in Jindo, Seongnamdo, and Hajodo.

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Efficacy of Hydrogen Peroxide on Root Rot Disease of Ginseng Sprouts (과산화수소를 이용한 새싹인삼의 뿌리썩음병 방제효과)

  • Jong-Seok, Song;Geum Ran, Ahn;Sunkyung, Jung
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.204-208
    • /
    • 2022
  • Hydrogen peroxide is an eco-friendly oxidizing agent, which has exhibited a broad spectrum of antimicrobial activity without adverse environmental impact. This study was conducted to investigate the antifungal effect of hydrogen peroxide treatment against Cylindrocarpon destructans, and consequently to evaluate its control efficacy against root rot disease of 2-year-old ginseng plants. Hydrogen peroxide treatment strongly inhibited the viability of C. destructans conidia in vitro. The hydrogen peroxide at a concentration of 300 mg/l significantly reduced disease infection of the ginseng root when treated to spore suspension (107 conidia/ml). Spraying with 300 mg/l of hydrogen peroxide reduced the root rot disease of the ginseng sprouts by 15% compared to the untreated control at 14 days after the inoculation. However, 300 mg/l of hydrogen peroxide delayed the emergence of ginseng plants during sprouting under aeroponic conditions. Further works need to be done to provide an acceptable control efficacy of hydrogen peroxide against the disease and its good safety to ginseng plants.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Studies on the Construction of Mutant Diversity Pool (MDP) lines, and their Genomic Characterization in Soybean

  • Dong-Gun Kim;Sang Hoon Kim;Chang-Hyu Bae;Soon-Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.9-9
    • /
    • 2021
  • Mutation breeding is useful for improving agronomic characteristics of various crops. In this study, we constructed soybean Mutant Diversity Pool (MDP) from 1,695 gamma-irradiated mutants through two selection phases over M1 to M12 generations; we selected 523 mutant lines exhibiting at least 30% superior agricultural characteristics, and, second, we eliminated redundant morphological phenotypes in the M12 generation. Finally, we constructed 208 MDP lines and investigated 11 agronomic traits. We then assessed the genetic diversity and inter-relationships of these MDP lines using target region amplification polymorphism (TRAP) markers. Among the different TRAP primer combinations, polymorphism levels and PIC values averaged 59.71% and 0.15, respectively. Dendrogram and population structure analyses divided the MDP lines into four major groups. According to an analysis of AMOVA, the percentage of inter-population variation among mutants was 11.320 (20.6%), whereas mutant inter-population variation ranged from 0.231 (0.4%) to 14.324 (26.1%). Overall, the genetic similarity of each cultivar and its mutants were higher than within other mutant populations. In an analysis of the genome-wide association study (GWAS) using based on the genotyping-by-sequencing (GBS), we detected 66 SNPs located on 13 different chromosomes were found to be highly associated with four agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with those previously reported for other genetic resource populations, including natural accessions and recombinant inbred line. Our observations suggest that genomic changes in mutant individuals induced by gamma rays occurred at the same loci as those of natural soybean population. This study has demonstrated that the integration of GBS and GWAS can serve as a powerful complementary approach to gamma-ray mutation for the dissection of complex traits in soybean.

  • PDF