• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.035 seconds

The Effects of Seismic Failure Correlations on the Probabilistic Seismic Safety Assessments of Nuclear Power Plants (지진 손상 상관성이 플랜트의 확률론적 지진 안전성 평가에 미치는 영향)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jeon, Bub-Gyu;Park, Dong-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Nuclear power plant's safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant's seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant's seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.

A TILLING Rice Population Induced by Gamma-ray Irradiation and its Genetic Diversity

  • Cho, Hyun Yong;Park, Seo Jung;Kim, Dong Sub;Jang, Cheol Seong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 $M_3$ TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Effects of Nutrient Solution Application Methods and Rhizospheric Ventilation on Vegetative Growth of Young Moth Orchids without a Potting Medium in a Closed-Type Plant Factory

  • Min, Sang Yoon;Oh, Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.545-554
    • /
    • 2020
  • Background and objective: Moth orchids in the vegetative stage are suitable for a multi-layer growing environment in a closed-type plant factory which can be a good alternative that can reduce production costs by reducing cultivation time and energy cost per plant. This study was conducted to find out the optimal rhizospheric environment for different irrigation methods without a potting medium and rhizospheric ventilation for the vegetative growth of young Phalaenopsis hybrid 'Blanc Rouge' (P. KV600 × P. Kang 1) and Phalaenopsis Queen Beer 'Mantefon' in a closed-type plant factory system. Methods: The one-month-old clonal micropropagules with bare roots rapped with a sponges were fixed on the holes of styrofoam plates above growth beds, and were watered using the ebb-and-flow (EBB) and aeroponic (AER) methods with Ichihashi solution (0.5 strength) once a day at 06:00 (P) or 18:00 (S), and both (PS). Rhizospheric ventilation (V) was also applied to change the temperature, relative humidity, and CO2 concentration of the beds. Plants potted into sphagnum moss and watered once a week were used as the control group. Results: After 12 months of treatment, the growth characteristics of the EBB groups were the best among the treatment groups without a medium, but no effect of irrigation timing was observed. V reduced the temperature, relative humidity and CO2 concentration of the beds. Whereas, EBB+V (ebb-and-flow with ventilation) improved plant growth and reduced the occurrence of disorders and withering. Especially, EBB+V showed a similar performance to the control group. Conclusion: The results indicated that the optimal irrigation method without a potting medium for producing middle-aged potted moth orchids was the EBB system with forced rhizospheric ventilation. Therefore, further studies on the optimal ventilation method and moisture control of the crown need to be carried out to develop the irrigation system without a potting medium for vertical farming in closed-type plant factories.

Neuroprotective effects of some herbal medicine plant extract against ischemia·reperfusion-induced cell death in SK-N-SH neuronal cells (허혈·재관류 유도성 신경세포사멸에 대하여 신경보호효과를 가지는 약용식물 추출물의 검색)

  • Oh, Tae-Woo;Lee, Mi Young;Lee, Hye Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water and 80% EtOH extract of some herbal medicine plant on ischemia reperfusion-induced cell death in SK-N-SH human brain neuronal cells. Methods : SK-N-SH cells were treated with 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, ptior to the addition of different concentrations of herbal medicine plant extract (0, 10, 25, 50, 100, 250, 500, 1000 ${\mu}g/ml$) for 2 hr and then reperfused with growth medium, incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. Results : Herbal medicine plant extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. Also increased the ratio of ADP/ATP in ischemia-induced neuronal cells. Conclusions : Our results suggest that herbal medicine plant extract has a neuroprotective property via increasing the energy levels in neuronal cells, suggesting that extract may has a therapeutic potential in the treatment of ischemic brain injury. The exact component and mechanism remains for the future study.

Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type (인공광 식물공장내 광질 제어가 방풍나물 생장에 미치는 영향)

  • Heo, Jeong-Wook;Kim, Dong-Eok;Han, Kil-Su;Kim, Sook-Jong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • BACKGROUND: Plant factory system of an artificial light type using Light-Emitting Diodes (LEDs), fluorescent light, or metal halide lamp instead of sun light is an ultimated method for plant production without any pesticides regardless of seasonal changes. The plant factory is also completely isolated from outside environmental conditions such as a light, temperature, or humidity compared to conventional greenhouse. Light-environment control such as a quality or quantity in the plant factory system is essential for improving the growth and development of plant species. However, there was little report that the effects of various light qualities provided by LEDs on Ledebouriella seseloides growth under the plant factory system. METHODS AND RESULTS: Ledebouriella seseloides seedlings transplanted at urethane sponge were grown in the plant factory system of a horizontal type with LED artificial lights for 90 days. Yamazaki solution for hydroponic culture of the seedlings was regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Electrical Conductivity (EC) and pH of the solution was recorded at 1.4 ds/m and 5.8 in average, respectively during the experimental period. Number of unfolded leaves, leaf length, shoot fresh and dry weight of the seedlings were three times measured in every 30 days after beginning of the experiment. Blue LEDs, red LEDs, and fluorescent lights inside the plant factory were used as light sources. Conventional fluorescent lamps were considered as a control. In all the treatment, light intensity was maintained at $100{\mu}mol/m^2/s$ on the culture bed. Fresh weight of the seedlings was 3.7 times greater in the treatment with the mixture radiation of fluorescent light and blue+red LEDs (1:3 in energy ratio; Treatment FLBR13) than in fluorescent light treatment (Treatment FL). In FLBR13 treatment, dry weight per seedling was two times greater than in FL or BR11 treatment of blue+red LEDs (1:3 in energy ratio; Treatment BR11) during the culture period. Increasing in number of unfolded leaves was also significantly affected by the FLBR13 treatment comparing with BR11 treatment. CONCLUSION(S): Hydroponic culture of Ledebouriella seseloides seedlings was successfully achieved in the plant factory system with mixture lights of blue, red LEDs and fluorescent lights. Shoot growth of the seedlings was significantly promoted by the FLBR13 with the mixture radiation of fluorescent light, blue, and red LEDs under 1:3 mixture ratio of blue and red LEDs during the experimental period compared to conventional light conditions.

Determination of the Optimal Contract Amount of the Hydropower Energy Considering the Reliabilities of Reservoir Inflows (저수지(貯水池) 유입량(流入量)의 신뢰도(信賴度)를 고려한 최적(最適) 계약전력량(契約電力量)의 결정(決定))

  • Kwon, Oh Hun;Yoo, Ju Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • Production of hydro-energy is random in its output amount due to the characteristics of the reservoir inflows. Therefore, it is necessary to provide the rationality in determining the amount of energy for a supply contract. This study presents a methodology for determining reasonably reliable amount of the energy supply considering the energy sale-incomes associated with the penalties which are subject to inflow-reliabilities. The objective function consists of the returns of energy sales and the risk-loss function to reflect statistically relevant risks. A range of the coefficient of the risk-loss function was figured out by its sensitivity analysis. The risk-loss herein means the penalty which should be paid by the energy supplier in case that the level of the energy supply is behind the contracted amount. And the reliability of reservoir inflow is defined by the exceedance probability of the inflow. The log-normal distribution was accepted as the probability density function of monthly inflows on the level of significance at 5%. Golden-ratio searching was applied to identify the optimal reliability and Incremental Dynamic Programming was used to maximize generation of the hydro-power energy in reservoir operation. The algorithm was the applied to the Daechung multi-purpose reservoir and hydro-power plant system in order to verify its usefulness.

  • PDF

Development of Adsorption Desalination System Utilizing Silica-gel (실리카겔을 이용한 흡착식 담수화 시스템의 기초연구)

  • Hyun, Jun-Ho;Kim, Yeong-Min;Jung, Jin-Ho;Lee, Yoon-Joon;Chun, Won-Gee
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.204-209
    • /
    • 2011
  • According to the environment report of UN, korea was classified as potable water shortage countries. Approximately 71% of the Earth's surface is covered by ocean. However, it is difficult to use for industry of residential purpose without a certain processing. The development of solar and waste-heat used absorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar and waste-heat used and adsorption desalination system was introduced. The design is divided into three parts. First, the evaporator for the vaporization of the top water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basicresearch, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar and waste energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times.

  • PDF

Analysis of the Part Load Ratio Characteristics and Gas Energy Consumption of a Hot Water Boiler in a Residential Building under Korean Climatic Conditions (국내 기상조건하 주거용 건물 가스 보일러의 부분부하 특성과 에너지 사용량 분석)

  • Yu, Byeong Ho;Seo, Byeong-Mo;Moon, Jin-Woo;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.455-462
    • /
    • 2015
  • Residential buildings account for a significant portion of the total building-energy usage in Korea, and a variety of research studies on the domestic boiler have therefore been carried out; however, most of these studies examined the boiler itself, whereby the part-load ratio characteristics and the corresponding gas-energy consumption patterns were not analyzed. In this study, the part-load ratio and operating characteristics of a domestic gas boiler were analyzed within a residential building equipped with a radiant floor-heating system; in addition, the energy consumption between condensing and conventional boilers was comparatively analyzed. Our results show that significant portions of the total operating hours, heating load, and energy consumption are in the part-load ratio range of 0 through 40%, whereby the energy consumption was significantly affected by the boiler efficiency under low part-load conditions. These results indicate that the part-load operation of a boiler is an important factor in residential buildings; furthermore, replacing a conventional boiler with a condensing boiler can reduce annual gas-energy usage by more than 20%.

Differential Expression of Rice Lipid Transfer Protein Gene (LTP) Classes in Response to γ-irradiation Pattern (감마선 조사 패턴에 따른 벼의 Lipid Transfer Protein Gene (LTP)의 발현 차이)

  • Kim, Sun-Hee;Song, Mira;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Park, Yong Dae;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • In this study, we investigated to evaluate differential expression of genes encoding lipid transfer proteins (LTP) by acute and chronic gamma irradiation in rice. After acute and chronic gamma irradiation by 100 Gy and 400 Gy to rice plant, necrotic lesion was observed in the leaf blade and anthocyanin contents were increased. We isolated a total of 21 rice lipid transfer protein (LTP) genes in the TIGR database, and these genes were divided into four different groups on the basis of nucleotide sequences. The LTP genes also were classified as different four classes according to expression pattern using RT-PCR. Group A, B contained genes with increased expression and decreased expression in acute and chronic, respectively. Group C contained genes with contrasted expression pattern. Group D wasn't a regular pattern. But the specific affinity was not obtained between two grouping.