• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.029 seconds

Feasibility Evaluation & Strategy of Replacement of Power Generation Fuel by Using Bio-diesel (바이오 디젤의 발전용 연료화 타당성 및 추진전략)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Kim, Sung-Chul
    • New & Renewable Energy
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2009
  • Availability of reliable and affordable energy supply is a prerequisite for economic growth. Renewables are the third largest contributor to global electricity production after coal and natural gas and account for a share of 18%. Power generating capacity from renewables has increased to around 900GW by the year 2007. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the feasibility study for adaptability and strategy of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

  • PDF

FLB Event Analysis with regard to the Fuel Failure

  • Baek, Seung-Su;Lee, Byung-Il;Lee, Gyu-Cheon;Kim, Hee-Cheol;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.622-627
    • /
    • 1996
  • Detailed analysis of Feedwater Line Break (FLB) event for the fuel failure point of view are lack because the event was characterized as the increase in reactor coolant system (RCS) pressure. Up to now, the potential of the rapid system heatup case has been emphasized and comprehensively studied. The cooldown effects of FLB event is considered to be bounded by the Steam Line Break (SLB) event since the cooldown effect of SLB event is larger than that of the FLB event. This analysis provides a new possible path which can cause the fuel failure. The new path means that the fuel failure can occur under the heatup scenario because the Pressurizer Safety Valves (PSVs) open before the reactor trips. The 1000 MWe typical C-E plant FLB event assuming Loss of Offsite Power (LOOP) at the turbine trip has been analyzed as an example and the results show less than 1% of the fuel failure. The result is well within the acceptance criteria. In addition to that, a study was accomplished to prevent the fuel failure for the heatup scenario case as an example. It is found that giving the proper pressure gap between High Pressurizer Pressure Trip (HPPT) analysis setpoint and the minimum PSV opening pressure could prevent the fuel failure.

  • PDF

Development of Risk Based Inspection (RBI) Procedures for Optimized Preventive Maintenance (PM) Planning of Energy Plants (에너지플랜트의 최적 예방점검을 위한 위험도기반 설비 관리(RBI) 절차 개발)

  • Choi, Jeong-Woo;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • Recently, needs for extending remaining life and integrity of the aged energy plants are increased since the most domestic plants have been operated over 10 years. This need makes RAM (reliability, availability and maintainability) of the plant become more significant. RBI (risk based inspection) is main technology to increase RAM in energy plants. So far RBI has been developed mainly in the field of process plants (chemical/refinery), underground buried pipelines or nuclear power plants. However, the existing RBI procedure is limited mainly to process plants, it need to be extended to the other energy plants such as fossil power plants. In this study, a general RBI procedure for optimized PM (preventive maintenance) is proposed for various energy plants.

Environmentally-Friendly Pretreatment of Rice Straw by an Electron Beam Irradiation (전자선 조사를 이용한 볏짚의 친환경 전처리 공정)

  • Lee, Byoung-Min;Lee, Jin-Young;Kim, Du-Yeong;Hong, Sung-Kwon;Kang, Phil-Hyun;Jeun, Joon-Pyo
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.297-302
    • /
    • 2014
  • The autoclaving assisted by an irradiation pretreatment method was developed without toxic chemicals to produce fermentable sugars for their conversion to bioethanol. In the first step, electron beam irradiation (EBI) of rice straw was performed at various doses. The electron beam-irradiated rice straw was then autoclaved with DI water at $120^{\circ}C$ for 1 h. A total sugar yield of 81% was obtained from 300 kGy electron beam-irradiated rice straw after 72 h of enzymatic hydrolysis by Cellulase 1.5L (70 FPU/mL) and Novozyme-188 (40 CbU/mL). Also, the removal of hemicellulose and lignin was 32.0% and 32.5%, respectively. This result indicates that the environmentally-friendly pretreatment method of rice straw by an electron beam irradiation could be applied for bioethanol production in plant.

Experimental Study on Thermal Performance of Palte-type Fresh Water Generator for applying Solar Energy Desalination System (태양에너지 해수담수화시스템에의 적용을 위한 판형 해수담수기의 열성능에 관한 실험적 연구)

  • Kim, Jeong-Bae;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.35-41
    • /
    • 2007
  • To demonstrate the desalination system, the demo-plant was scheduled to be installed. The system was planned to use solar thermal collector as heat source and PV as electricity source. For the design of the desalination demonstration system, firstly the solar thermal system would be well designed from the result between the supplied heat into the fresh water generator and the fresh water yield. The generator for demonstration system was chosen as the fresh water generator of the single stage and effect with plate-type heat exchanger using low pressure evaporation method. The test facility for the tests to reveal the relationship between the fresh water yield and the supplied heat flow rate was designed and manufactured. The maximum fresh water yield of two fresh water generators applied in this study was designed as 1.5 Ton/day. The parameters relating with the performance of fresh water generator are known as sea water inlet temperature, hot water inlet temperature, and hot water flow rate. Through the experiments, this study firstly showed detail operation characteristics of the generator and designed the solar thermal system for the demonstration system.

A Development of the On-line Maintenance and Management System for the HVAC system Using IT (IT를 활용한 공조설비의 온라인 유지관리시스템 개발)

  • Lee, Tae-Won;Kim, Yong-Ki;Kang, Sung-Ju;Woo, Nam-Sub
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.48-53
    • /
    • 2008
  • The performances of the building service equipment relay on the individual superintendent's share for the assessment of performance, fault detection, deterioration diagnosis of the building service equipment. A major use of building energy management system(BEMS) is for monitoring plant and building's energy consumption. National building management system (N-BMS) presented in this study links buildings into a network group in order to monitor and control the buildings. How to construct the N-BMS was considered to save energy resource and to conserve performance of building service equipment. The FEMIS, facility, energy/environmental management & information system, for building service offer management process integrated with BAS, FMS and EMS and so on.

  • PDF

Experimental Study on the Carbonation Properties of Dry Desulfurized Gypsum

  • Seo, Sung Kwan;Kim, Yoo;Chu, Yong Sik;Cho, Hyeong Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.44-49
    • /
    • 2018
  • The use of fossil fuels is steadily increasing. The thermal power generation industry uses a lot of energy and emits a large amount of greenhouse gases. On the other hand, a desulfurization facility can be installed to remove sulfur content during boiler combustion process of the power plant. Dry desulfurized gypsum generated from dry desulfurization facilities is suitable as a $CO_2$ absorbing material due to the presence of CaO. In this study, the carbonation properties of dry desulfurized gypsum were investigated by carbonizing dry desulfurized gypsum via mixing with water and stirring. As a result of microstructural, XRD and thermal analyses of the carbonized dry desulfurized gypsum, the carbonation age was found to be suitable for 16 h. Dry desulfurized gypsum absorbs about 16% of $CO_2$ per unit weight.

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

Repassivation Behavior of Ni Base Alloys in a Mild Alkaline Water at 300℃

  • Hwang, Seong Sik;Kim, Dong Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.85-89
    • /
    • 2006
  • KAERI(Korea Atomic Energy Research Institute) has developed a repassivation rate test system which can be operated at $300^{\circ}C$. It consists of an autoclave, three electrodes for an electrochemical test and a diamond scratch tip. All the electrodes are electrically insulated from the autoclave by using high temperature fittings. Reproducible repassivation curves of alloy 600 at 300 C were obtained. Repassivation rate of alloy 600 at pH 13 was slower than that of pH 10. Stress corrosion cracking test was carried as a function of the pH at a high temperature. At pH 10, alloy 600 showed a severe stress corrosion cracking(SCC), whereas it did not show a SCC at pH 7. From the viewpoint of a relationship between the current density and the charge density, a big difference was observed in the two solutions; the slope of pH 13 was steeper than that of pH 10. So the stress corrosion susceptibility at pH 13 seems to be higher than that of pH 10. The system would be a good tool to evaluate the SCC susceptibility of alloy 600 at a high temperature.

A Study on the Analysis of Solar Radiation Characteristics on a High Elevated Area (고지대 일사량 특성분석에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack;Auh, Chung-Moo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.3
    • /
    • pp.23-28
    • /
    • 2003
  • The purpose of this study is to procure basic data to be used for solar power plant and concentrating collector designs. Site elevation is one of the major factors which influences the incoming insolation to the earth surface. Because the nonpermanent gases such as ozone, water vapor are unmixed components of the atmosphere and their concentrations are the function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Jiri Mt. (1,400m) and in Gurye area(115m) at the near same latitude. These values were then compared to obtain their characteristics and to investigate the potential for the solar utilization for both high and low elevated areas. From the experimental results, we concluded that 1) Daily mean horizontal global radiation and normal beam radiation on Mt. Jiri are 9.5%, and 35.3% higher than Gurye area respectively for a clear day. 2) A significant difference in atmospheric clearness index is observed between Mt. Jiri and Gurye areas.