• Title/Summary/Keyword: Energy plant

Search Result 3,892, Processing Time 0.034 seconds

Evaluation of Cooling Energy Consumption Varying Economizer Control and Heat Generation Rates from IT Equipment in Data Center

  • Ahmin JANG;San JIN;Minho KIM;Hyoungchul KANG;Sung Lok DO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1010-1017
    • /
    • 2024
  • A data center stores and manages internet data. The data center is mainly comprised of IT equipment, cooling systems, and other components. IT equipment is used for storing and processing internet data, generating heat during use. If the heat generated by IT equipment is not removed, it can cause malfunctions, and cooling systems are used to remove this heat. Cooling systems account for more than 40% of the total energy consumption and reducing cooling energy can reduce the overall energy consumption of the data center. Therefore, analyzing the cooling energy consumption according to heat generation changes caused by IT equipment in the data center is necessary. This study analyzed the impact of heat generation changes in IT equipment on cooling energy consumption. Additionally, three different economizer control methods were applied to select the optimal economizer control method. To achieve this, a data center model with economizer systems applied was developed using data measured from IT equipment and cooling systems. As a result, as the operation rates of IT equipment increased from minimum to maximum, the annual energy consumption for each case increased by approximately 11.7%. The economizer analysis showed that the energy savings were greatest when dry bulb temperature control was applied, but it did not meet the operation environment of the IT equipment. Therefore, it was determined that economizer control to meet the operation environment of IT equipment is required to be enthalpy-based.

A Study on the Optimum Capacity of Combind Heat & Power Plant Related to Size of District Heating System (지역난방 규모에 따른 열병합발전플랜트의 경제적 최적용량 선정에 관한 연구)

  • Chung, Cahn-Kyo;Kim, Hoon
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2000
  • The purpose of this study is to find plant utilities capacity for economical operation of combined heat & power by reducing energy expenditure. Using a numerical simulation program CHPSIM, a comparative analysis of additional heat expenditure (AHE) of combined heat & power plant in relation to size of district heating has been performed within the comparison of the difference capacity of gas turbine and steam turbine . As a results, if a 105.2MW gas turbine (exhaust gas temp ; 540$^{\circ}C$) installed in CHP plant can reduced 17-18% yearly the AHE than 75MW gas turbine (520$^{\circ}C$) installed. If a 130-150MW gas turbine (560-580$^{\circ}C$) installed, can reduced 34.7-35.8% of the yearly AHE.

  • PDF

Severe Accident Management Using PSA Event Tree Technology

  • Choi, Young;Jeong, Kwang Sub;Park, SooYong
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • There are a lot of uncertainties in the severe accident phenomena and scenarios in nuclear power plants (NPPs) and one of the major issues for severe accident management is the reduction of these uncertainties. The severe accident management aid system using Probabilistic Safety Assessments (PSA) technology is developed for the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, previous research results by a knowledge-base technique, and the expected plant behavior using PSA. The plant model used in this paper is oriented to identify plant response and vulnerabilities via analyzing the quantified results, and to set up a framework for an accident management program based on these analysis results. Therefore the developed system may playa central role of information source for decision-making for severe accident management, and will be used as a training tool for severe accident management.

Performance Analysis of OTEC Power Plant (해양온도차 발전 플랜트 성능해석)

  • Uhm, Ji-Hong;Lee, Jae-Yong;Kim, Nam-Jin;Kim, Chong-Bo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.234-240
    • /
    • 2000
  • The Energy is the basis for almost all industrial activities and domestic needs. But recently there are increasing concerns internationally over environmental problems and consequent climate changes caused by the excessive use of fossil fuels. Furthermore the price of crude oil is increasing steadily with unstable supplies. In order to solve these national energy problems, the utilization of Ocean Energy is introduced as one of the best alternative technologies for the future. OTEC Power Plant has been installed at the West Inchon Power Plant Site. Temperature differences of $20{\sim}25^{\circ}C$ have been utilized for plant operations, where R22 is used as a working fluid. The system is composed of low pressure turbine, plate type heat exchanger, and pumps. In the present investigation the experimental results, such as gross power, net power and objective function, are analysed when temperature differences change from the reference design point.

  • PDF

Biofuel: Current Status in Production and Research

  • Yu, Ju-Kyung;Park, Soon Ki
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.121-128
    • /
    • 2010
  • Finding alternative and renewable energy sources has become an important goal for plant scientists, especially with the demand for energy increasing worldwide and the supply of fossil fuel being depleted. The most important biofuel to date is bioethanol which is produced from sugars (sucrose and starch) found in corn and sugarcane. Second generation bioethanol is targeting studies that would allow the use of the cell wall (lignocellulose) as a source of carbon by non-food plants. Plant scientists, including breeders, agronomists, physiologists and molecular biologists, are working towards the development of new and improved energy crops especially, how to design crops for bioenergy production and increased biomass generation for biofuel purposes. This review focuses on: i) the current status of first generation bioenergy production, ii) the limitations of first and second generation bioenergy, and iii) ongoing research to overcome challenging issues in second generation bioenergy.

A study on the efficiency of ESS installed in a small solar power plant based on actual data (실측데이터 기반 소규모 태양광발전소 연계용 ESS 효율 분석에 관한 연구)

  • Youn, Geum-Ran;Lee, Tae-kyu;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.350-357
    • /
    • 2019
  • We analyzed the system efficiency of small solar power plants with 80% of total solar power plants. The data of the solar power plant with installed capacity of 100kW was collected and the correlation of the ESS efficiency according to the capacity of the PCS and the battery of each power plant was deduced. As a result, the higher the C-rate value affecting the discharge rate of the battery, The discharge efficiency of the plasma display panel is increased.

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.

A time-reliability correlation for estimating the diagnosis error probability of a nuclear power plant with up-to-date Human-Machine interfaces

  • Wondea Jung;Yochan Kim;Jinkyun Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4087-4096
    • /
    • 2024
  • Despite being developed more than four decades ago based on expert judgment, the THERP time-reliability correlation (TRC) remains widely employed for calculating diagnosis human error probabilities in human reliability analysis for nuclear power plant risk assessment. However, with numerous advancements in nuclear plant equipment and operations, as well as the emergence of plants featuring advanced interfaces, there's a growing need to validate the THERP TRC. The objective of this study is to establish a TRC for the diagnosis human error probability in a modern reference nuclear power plant equipped with up-to-date human-machine interfaces and compare it with the median of the THERP TRC. To achieve this goal, we devised a method to gather event diagnosis times from a simulator and developed procedures to derive diagnosis TRCs using this data. Our findings indicate that while the median of the THERP TRC offers a conservative diagnosis human error probability for up to 25 min, it becomes overly optimistic beyond this threshold.

Large-scale Virtual Power Plant Management Method Considering Variable and Sensitive Loads (가변 및 민감성 부하를 고려한 대단위 가상 발전소 운영 방법)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.225-234
    • /
    • 2015
  • Nowadays a Virtual Power Plant (VPP) represents an aggregation of distributed energy resource such as Distributed Generation (DG), Combined Heat and Power generation (CHP), Energy Storage Systems (ESS) and load in order to operate as a single power plant by using Information and Communication Technologies, ICT. The VPP has been developed and verified based on a single virtual plant platform which is connected with a number of various distributed energy resources. As the VPP's distributed energy resources increase, so does the number of data from distributed energy. Moreover, it is obviously inefficient in the aspects of technique and cost that a virtual plant platform operates in a centralized manner over widespread region. In this paper the concept of the large-scale VPP which can reduce a error probability of system's load and increase the robustness of data exchange among distributed energy resources will be proposed. In addition, it can directly control and supervise energy resource by making small size's virtual platform which can make a optimal resource scheduling to consider of variable and sensitive load in the large-scale VPP. It makes certain the result is verified by simulation.

Evaluation Model and Experimental Validation of Tritium in Agricultural Plant (농작물의 삼중수소 오염평가 모델 개발 및 실험검증)

  • Kang Hee Suk;Keum Dong-kwon;Lee Hansoo;In Jun;Choi Yong Ho;Lee Chang Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.319-328
    • /
    • 2005
  • This paper describes a compartment dynamic model for evaluating the contamination level of kritium in agricultural plants exposed by accidentally released tritium. The present model uses a time-dependent growth equation of plant so that it can predict the effect of growth stage of plant during the exposure time. The model including atmosphere, soil and plant compartments is described by a set of nonlinear ordinary differential equations, and is able to predict time-dependent concentrations of tritium in the compartments. To validate the model, a series of exposure experiments of HTO vapor on Chinese cabbage and radish was carried out at the different growth stage of each plant. At the end of exposure, the tissue free water(TFWT) and the organically bound tritium(OBT) were measured. The measured concentrations were agreed well with model predictions.

  • PDF