• 제목/요약/키워드: Energy performance simulation

검색결과 2,372건 처리시간 0.032초

TPS를 이용한 경량전철의 주행 성능 향상 방안 시뮬레이션 (Train Performance Improvement Simulation of Light Rail Transit by TPS)

  • 이동형;구동회;이경철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.288-293
    • /
    • 2006
  • In this work, the characteristics and the improving method of train performance of Korean rubber-tired AGT system(K-AGT) and Urban MAGLEV system are evaluated by using Train Performance Simulation(TPS). The train performance characteristics of K-AGT were analysed according to the change of maximum running speed and those of Urban MAGLEV were evaluated according to a vehicle weight variation. In the result of simulation in virtual line, the scheduled speed and the running time of K-AGT system have no difference with Urban MAGLEV system if the maximum running speed is equal. But the energy consumption of Urban MAGLEV system is more than that of K-AGT system. The analyses showed that in case of a 20 percent vehicle weight reduction of Urban MAGLEV system, the energy consumption per person is similar with the K-AGT system. The Urban MAGLEV system is more efficient in long travel distance condition than in short running distance condition in the aspect of train performance.

  • PDF

군사시설 내 지열 히트펌프 시스템 적용에 따른 에너지 성능과 비용 절감 효과 평가 (Energy Performance and Cost Assessment for Implementing GroundSource Heat Pump System in Military Building)

  • 손병후;조경주;조동우
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.45-57
    • /
    • 2022
  • The Ministry of National Defense of the Republic of Korea is showing a lot of interest in net zero-energy buildings (NZEBs) to reduce energy consumption of military facilities and to promote green growth policy in military sector. The application of building passive technologies and renewable energies is essential to achieving NZEBs. This paper analyzed energy performance and energy cost on the conventional heating and cooling system (baseline scenario) and three different alternative scenarios (ALT 1, ALT 2 and ALT 3) applied in a hypothetical military building. A building modeling and simulation software (DesignBuilder V6.1) with EnergyPlus calculation engine was used to calculate the energy consumption for each scenario. Overall, when the GSHPs are applied to both space airconditioning and domestic hot water (DHW) production, Alt-2 and Alt-3, the amount of energy consumption for target building can be greatly reduced. In addition, when the building envelope performance is increased like Alt-3, the energy consumption can be further reduced. The annual energy cost analysis showed that the baseline was approximately 161 million KRW, while Alt-3 was approximately 33 million KRW. Therefore, it was analyzed that the initial construction cost increase could be recovered within about 6.7 years for ALT 3. The results of this study can help decision-makers to determine the optimal strategy for implementing GSHP systems in military buildings through energy performance and initial construction cost assessment.

학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석 (Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

The Evaluation of Ceiling Depth Impact on Lighting and Overall Energy Consumption of a Building with Top-lighting System

  • Amina, Irakoze;Kee, Han Ki;Lee, Young-A
    • Architectural research
    • /
    • 제22권1호
    • /
    • pp.13-21
    • /
    • 2020
  • The purpose of this study was to evaluate the variation in building energy predictions caused by simulation settings related to building envelop thickness. The study assessed the ceiling depth impact on skylight energy performance through OpenStudio integrated Radiance and EnergyPlus simulation programs. A ceiling as deep as 1.5 to 3m was analyzed for skylight to roof ratios from 1% to 25%. The results indicated that the building ceiling depth negatively affected the capability of skylights to significantly reduce building energy consumption. Through a parametric analysis, the study concluded that 8%, 9%, 10% and 11% skylight to roof ratio were optimal in terms of total building energy consumption for a ceiling depth of 1.5m, 2m, 2.5m and 3m, respectively. In addition, the results showed that the usually recommended 5% skylight to roof ratio was only efficient when no ceiling depth was included in the simulation model. Furthermore, the study indicated that the building energy saved by the optimal skylight of each ceiling depth decreased as the ceiling depth deepened. The highest total building energy reduction was 9%, 7%, 5% and 3% for a ceiling depth of 1.5m, 2m, 2.5m and 3m, respectively. This study induced that the solar heat gains and daylight visible transmittance by ceiling depth were crucial in the predictions of skylight energy performance and should not be neglected through building simulation simplifications as it is commonly done in most simulation programs' settings.

Simulation and Prediction on the Performance of a Hydrogen Engine

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.217-222
    • /
    • 2015
  • A computer simulation has been developed to predict and investigate the performance of the assumed hydrogen engine. The simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. The effects of various parameters, such as equivalent ratio, spark advance, revolutions per minute were calculated and then the optimal parameters of assumed engine were determined. The effects of spark advance, revolutions per minute, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The objective of the research paper is to develop a internal combustion model with hydrogen as a fuel.

민감도 분석을 통한 기존건축물의 에너지성능 진단항목 선별 (Selecting of the Energy Performance Diagnosis Items through the Sensitivity Analysis of Existing Buildings)

  • 공동석;장용성;허정호
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.354-361
    • /
    • 2015
  • The building energy audit is an important process when collecting basic information for improving the energy performance of existing buildings. Audit parameters should be associated with the energy performance of the building. Such audit parameters will vary according to an individual building's characteristics and energy consumption patterns, but most building energy audits are performed in the same way. The sensitivity analysis (SA) is a statistical method to quantify the correlation between inputs and outputs that can determine which input is influential to which output. Therefore, an SA can identify influential parameters when applied to building energy analysis. In this paper, we adopted the Morris method to identify building energy audit parameters and performed a Monte Carlo simulation for uncertainty analysis. As a result, this method was able to identify an influential parameter for building energy audits and reduce uncertainty in energy consumption in buildings.

지열원 히트펌프를 이용한 도로융설시스템의 CFD 성능예측에 관한 기초연구 (A Basic Study on the Performance CFD simulation of Road Snow-melting system by Ground Source Heat Pump)

  • 최덕인;김중현;김진호;황광일
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.23-28
    • /
    • 2010
  • Fluent ver.6.3 is used as CFD(Computational Fluid Dynamics) simulator to predict the performance of snow-melting system by geothermal pipes energy. As the results of this simulation, it is clearly shown that $50^{\circ}C$ of working fluid in to geothermal evaluated as more effect comparing to $45^{\circ}C$ of working fluid. The Surface temperature is come to $5^{\circ}C$ at 1m/s speed and $50^{\circ}C$ temperature of the working fluid.

BIM 기반 에너지성능분석을 통한 공동주택의 주동 설계 전략개발 - 주동타입 및 층수 변화를 중심으로 - (Multi-Family Housing Block Design Strategy Development by BIM-based Energy Performance Analysis - focusing on the Block Types and the Variations in Stories -)

  • 전재홍;박혜진;이권형;추승연
    • 대한건축학회논문집:계획계
    • /
    • 제34권2호
    • /
    • pp.3-11
    • /
    • 2018
  • Korea has achieved a rapid economic development and with the increase in population and national income and the expansion of social and economic activities, energy consumption has rapidly increased too. Energy consumption per head has constantly increased and currently, power consumption per head is 7.5 times bigger than in 1985. Buildings occupy 25% of total energy consumption and especially, 50% of total energy is consumed for heating and cooling. In this situation, multi-family housing, which has constantly been increased, has an energy saving rate of 1.9%, which is the lowest level and this makes the government's energy policy for sustainable energy system development useless. Besides, energy consumption leads to secondary problems, such as air, water and marine pollution and heat pollution and wastewater/drainage and the increased use of fossil fuel is a fundamental reason for ozone layer destruction and global warming. Therefore, efficient energy consumption plans are required. This study aims to analyze energy performance in each block type of high-rise and diversified multi-family housing that accounts for 60% of all the housing forms, depending on the variations in stories through BIM-based energy simulation. For this study, four representative block types were selected, based on the multi-family floor plan, which is certified for energy performance evaluation and they were applied to the floor plan of a multi-family house that is scheduled to be built. Then BIM modeling was conducted from the fifth story to the 40th story at an intervals of 5 stories and based on the finding, energy characteristics of each block type and energy performance depending on the variations in stories were analyzed. It is considered that this would serve as objective data for block type and block story decision of energy performance-based multi-family housing.

공기열원 2중히트싱크 열펌프의 성능해석 (Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser)

  • 우정선;이세균;이재효;박효순
    • 태양에너지
    • /
    • 제18권4호
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

친환경주거단지를 위한 에너지 성능개선에 관한 연구 (A Study on the Energy Performance Renovation for the Sustainable the Residential Houses)

  • 박진철;김기훈;송국섭;이현우
    • 한국태양에너지학회 논문집
    • /
    • 제23권4호
    • /
    • pp.89-96
    • /
    • 2003
  • In planning a building retrofit, energy conservation, thermal comfort and economic benefits should be considered. In this study, retrofit effects of exterior insulating method on preventing condensation, saving energy were analyzed through the heat transfer simulation, energy simulation in the apartment house retrofitted by exterior insulating method cheaper than other retrofit methods. The results of this study show that the retrofit using exterior insulating method can prevent the condensation at the corner walls and save about 20% of annual heating load. The LCC analysis revealed to be effective to select a dryvit system for a building retrofit.