• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.028 seconds

The Interconnection Technology of Small Self-generating System with Distribution Line

  • Park, Kyung-sun;Chiu Hwang
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.76-84
    • /
    • 1999
  • The demand of Small Self-generating System (SSS) including Small Cogeneration System (SCS) is constantly increasing with the need of electricity and/or thermal in office, hospital, hotel, and small factory, etc. It is especially recommended to operate SCS in the heat-following mode to maximize the efficiency of generator. In case of the heat-following mode SCS has got to be connected to distribution system so as to send surplus power to the utility or receive the short power from utility. But the interconnection of SSS with distribution system causes a few problems such as the bad power quality, and low security. If SSS is not promptly disconnected after faults occur (Islanding of SSS), it can not only damage equipment of utility and adjacent customers but also endanger life of human due to overvoltage or overcurrent. In this paper it has been deeply discussed if interconnection of engine self-generator/control system satisfies the protective requirement for SSS or not. 500 kW engine generator running in the Jodo island has been used to perform the analysis of interconnection.

  • PDF

A Study on Electromagnetic Structural Design of AFPM Generator for Urban Wind Turbine (도시형 풍력발전기용 AFPM 발전기의 전자기적 구조설계에 관한 연구)

  • Cho, Jun-Seok;Choi, Se-Kwon;Kim, Ju-Yong;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.830_831
    • /
    • 2009
  • Wind power system attracts most interest because of high-energy efficiency with environment-friendly. Small scale wind power applications requires a cost effective and mechanically simple generator in order to be a reliable energy source. The use of direct driven generators, instead of geared machines, reduces the number of drive components, which offers the opportunity to reduce costs and increases system reliability and efficiency. This paper presents the development of a coreless axial-flux permanent magnet(AFPM) generator for a urban wind power system. It is analyzed by electromagnetic simulation program Maxwell 3D

  • PDF

FEASIBILITY OF AN INTEGRATED STEAM GENERATOR SYSTEM IN A SODIUM-COOLED FAST REACTOR SUBJECTED TO ELEVATED TEMPERATURE SERVICES

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1115-1126
    • /
    • 2009
  • As one of the ways to enhance the economical features in sodium-cooled fast reactor development, the concept of an integrated steam generator and pump system (ISGPS) is proposed from a structural point of view. And the related intermediate heat transfer system (IHTS) piping layout compatible with the ISGPS is described in detail. To assure the creep design lifetime of 60 years, the structural integrity is investigated through high temperature structural evaluation procedures by the SIE ASME-NH computer code, which implements the ASME-NH design rules. From the results of this study, it is found that the proposed ISGPS concept is feasible and applicable to a commercial SFR design.

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil Measured at Low Frequency (금도금 방법으로 제작한 코일을 이용한 초소형 발전기의 저주파 진동 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Lee, Yoon-Pyo;Baek, Chang-Wook
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.10-14
    • /
    • 2006
  • We have designed and fabricated coil structures by gold electroplating technique. The thickness, width, and length are $7{\mu}m,\;20{\mu}m$, and 1.6m, respectively. With vibrating a magnet on the surface of a fabricated electroplated coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5Hz to 8Hz. The generated voltage was 106mV at 3Hz and 198mV at 6Hz. We have rectified and stepped up the input voltage using a quadrupler circuit. After using the step up circuit, the measured voltage was 81mV at 3Hz and 235mV at 6Hz.

  • PDF

An Experimental Study on the Small Capacity EHD Power Generation (소용량 EHD 발전에 관한 실험적 연구)

  • Jhoun, C.S.;Lee, J.B.;Lim, E.C.
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.58-68
    • /
    • 1989
  • This paper describes an experimental study that was performed to determine the limiting factors on the power output in the closed cycle Electro-Hydro-Dynamic generator of small capacity. A corona discharge for producing unipolar charged particles used as the charging method. The experiment demonstrated that the corona method of charging was an efficient and effective means of producing unipolar charged particles. Four factors having an effect on the power output characteristics of EHD generator are discussed and examined experimentally, using methyl alcohol and kerosene as working fluides; a. The conversion length between attractor and collector. b. The corona current of Emitter. c. The flow velocity of working fluids. d. Load resistance. This results are as follows; 1) There in a critical value in conversion length for its maximum power output. 2) Power output increases almost linearly with corona current and flow velocity. 3) There is the critical value of load resistance producing a maximum power output. 4) Kerosene is known better working fluid than Methyl alcohol in this EHD generator.

  • PDF

Heat Transfer Analysis of Ice Slurry Generator (아이스슬러리 제빙장치의 열전달 해석)

  • Shin, You-Hwan;Lee, Yoon-Pyo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.984-989
    • /
    • 2009
  • The present study has been conducted to predict the temperature distribution in the core of the scraper type ice generator. The analytic model was simplified as the flow in the annular type cylinder, which had an inside wall moving in axial direction due to the rotation of screw and a fixed outside wall. The governing equations were arranged by the method of separation of variables. The results corresponded to the exact solutions of the Bessel function. The qualitative results such as general characteristics of heat transfer in annulus flow from outer cylinder wall to the inside wall were obtained. However the amount of the heat transfer was underestimated as low as $1/5{\sim}1/6$ of the designed value.

  • PDF

Optimal Design of a Direct-Driven PM Wind Generator Aimed at Maximum AEP using Coupled FEA and Parallel Computing GA

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Hahn, Sung-Chin;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.552-558
    • /
    • 2008
  • Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.

Ocean Current Power Generation using sea water discharged from Turbine Generator and Gate Channel of Tidal Power Plant (조력발전소의 수차발전기 및 수문도수로 방출수를 이용한 해류발전)

  • Jang, Kyung-Soo;Lee, Jung-Eun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.180-183
    • /
    • 2008
  • This paper is about the ocean current power generation using sea water incoming into the lake surrounded by barrages and sea water discharged from a dam made of artificial structures. In operation of a tidal power plant, the sea water discharged from a turbine structure and a gate structure of a tidal power plant is faster than the tidal current caused by tides in nature and has better characteristics than that to run ocean current turbines. It is shown that the sea water discharged after generating electricity through a turbine generator of a tidal power plant and the sea water discharged from a gate structure of a tidal dam still have kinetic energy high enough to run an ocean current turbine and produce valuable electricity.

  • PDF

Design and Steady-state Electromagnetic Analysis of a Wind Energy Generator with Permanent Magnet (영구자석형 풍력발전기 설계 및 정상상태 전자계 해석)

  • Hwang, Don-Ha;Park, Doh-Young;Kang, Do-Hyun;Bae, Sung-Woo;Choi, Kyeong-Ho;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.6-8
    • /
    • 2002
  • This paper presents the design and finite-element(FE) analysis of an axial-flux permanent-magnet synchronous generator using neodymium-iron-boron(NdFeB) magnets for directly coupled wind turbines. For the high energy density and light weight, an axial-flux permanent-magnet(PM) generator type is used. The simple magnetic equivalent circuit approach is used for initial design iteration, and the finite-element method is applied to analyze the detailed characteristics.

  • PDF

A Concept of Buoyant Hybrid Power Generation System by using Solar Cell Modules and Power Generator in the Sea (태양전지 모듈 및 발전기를 사용한 해상 태양광-풍력 복합발전시스템 개념)

  • Cha, Kyung-Ho;Cha, Min-Jae;Lee, Hee-Sei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.91-93
    • /
    • 2008
  • A Buoyant Hybrid Power Generation System (BHPGS) described in this paper, is a conceptual approach to a hybrid solar-wind power generation in the near sea. The primary purpose of the BHPGS is given to improve utilization of solar cell modules. Main components of the BHPGS include a solar cell module, buoyant object, power generator, and support assembly including weight. Components such a generator controller, DC/AC converter, etc., are not configured in the current BHPGS because they can easily be purchased as a commercial-off-the-shelf product. In addition, some of the BHPGS applications are discussed.

  • PDF