• Title/Summary/Keyword: Energy generator

Search Result 1,837, Processing Time 0.021 seconds

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

A Study on the Power Supply and Demand Policy to Minimize Social Cost in Competitive Market (경쟁시장 하에서 사회적 비용을 고려한 전력수급정책 방향에 관한 연구)

  • Kwon, Byung-Hun;Song, Byung Gun;Kang, Seung-Jin
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.817-838
    • /
    • 2005
  • In this paper, the resource adequacy as well as the optimum fuel mix is obtained by the following procedures. First, the regulation body, the government agency, determine the reliability index as well as the optimum portfolio of the fuel mix during the planning horizon. Here, the resources with the characteristics of public goods such as demand-side management, renewable resources are assigned in advance. Also, the optimum portfolio is determined by reflecting the economics, environmental characteristics, public acceptance, regional supply and demand, etc. Second, the government announces the required amount of each fuel-type new resources during the planning horizon and the market participants bid to the government based on their own estimated fixed cost. Here, the government announces the winners of the each auction by plant type and the guaranteed fixed cost is determined by the marginal auction price by plant type. Third, the energy market is run and the surplus of each plant except their cost (guaranteed fixed cost and operating cost) is withdrew by the regulatory body. Here, to induce the generators to reduce their operating cost some incentives for each generator is given based on their performance. The performance is determined by the mechanism of the performance-based regulation (PBR). Here the free-riding performance should be subtracted to guarantee the transparent competition. Although the suggested mechanism looks like very regulated one, it provides two mechanism of the competition. That is, one is in the resource construction auction and the other is in the energy spot market. Also the advantages of the proposed method are it guarantee the proper resource adequacy as well as the desired fuel mix. However, this mechanism should be sustained during the transient period of the deregulation only. Therefore, generation resource planning procedure and market mechanisms are suggested to minimize possible stranded costs.

  • PDF

The Non-Destructive Determination of Heavy Metals in Welding Fume by EDXRF (EDXRF에 의한 용접흄 중의 중금속의 비파괴 정량)

  • Park, Seunghyun;Jeong, Jee Yeon;Ryoo, Jang Jin;Lee, Naroo;Yu, Il Je;Song, Kyung Seuk;Lee, Yong Hag;Han, Jeong Hee;Kim, Sung Jin;Park, Jung sun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.229-234
    • /
    • 2001
  • The EDXRF(Energy Dispersive X-ray Fluorescence Spectrometer) technique was applied to the determination of heavy metals in welding fume. The EDXRF method designed in this study was a non-destructive analysis method. Samples were analyzed directly by EDXRF without any pre-treatment such as digestion and dilution. The samples used to evaluate this method were laboratory samples exposed in a chamber connected with a welding fume generator. The samples were first analyzed using a non-destructive EDXRF method. The samples subsequently were analyzed using AAS method to verify accuray of the EDXRF method. The purpose of this study was to evaluate the possibility of the non-destructive analysis of heavy metals in welding fume by EDXRF. The results of this study were as follow: 1.When the samples were collected under the open-face sampling condition, a surface distribution of welding fume particles on sample filters was uniform, which made non-destructive analysis possible. 2. The method was statistically evaluated according to the NIOSH(National Institute for Occupational Safety and Health) and HSE(Health and Safety Executive) method. 3. The overall precision of the EDXRF method Was calculated at 3.45 % for Cr, 2.57 % for Fe and 3.78 % for Mn as relative standard deviation(RSD), respectively. The limits of detection were calculated at $0.46{\mu}g$/sample for Cr, $0.20{\mu}g$/sample for Fe and $1.14{\mu}g$/sample for Mn, respectively. 4. A comparison between the results of Cr, Fe, Mn analyzed by EDXRF and AAS was made in order to assess the accuracy of EDXRF method. The correlation coefficient between the results of EDXRF and AAS was 0.9985 for Cr, 0.9995 for Fe and 0.9982 for Mn, respectively. The overall uncertainty was determined to be ${\pm}12.31%$, 8.64 % and 11.91 % for Cr, Fe and Mn, respectively. In conclusion, this study showed that Cr, Fe, Mn in welding fume were successfully analyzed by the EDXRF without any sample pre-treatment such as digestion and dilution and a good correlation between the results of EDXRF and AAS was obtained. It was thus possible to use the EDXRF technique as an analysis method of working environment samples. The EDXRF method was an efficient method in a non-destructive analysis of heavy metals in welding fume.

  • PDF

Evaluation and Verification of the Attenuation Rate of Lead Sheets by Tube Voltage for Reference to Radiation Shielding Facilities (방사선 방어시설 구축 시 활용 가능한 관전압별 납 시트 차폐율 성능평가 및 실측 검증)

  • Ki-Yoon Lee;Kyung-Hwan Jung;Dong-Hee Han;Jang-Oh Kim;Man-Seok Han;Jong-Won Gil;Cheol-Ha Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.489-495
    • /
    • 2023
  • Radiation shielding facilities are constructed in locations where diagnostic radiation generators are installed, with the aim of preventing exposure for patients and radiation workers. The purpose of this study is seek to compare and validate the trend of attenuation thickness of lead, the primary material in these radiation shielding facilities, at different maximum tube voltages by Monte Carlo simulations and measurement. We employed the Monte Carlo N-Particle 6 simulation code. Within this simulation, we set a lead shielding arrangement, where the distance between the source and the lead sheet was set at 100 cm and the field of view was set at 10 × 10 cm2. Additionally, we varied the tube voltages to encompass 80, 100, 120, and 140 kVp. We calculated energy spectra for each respective tube voltage and applied them in the simulations. Lead thicknesses corresponding to attenuation rates of 50, 70, 90, and 95% were determined for tube voltages of 80, 100, 120, and 140 kVp. For 80 kVp, the calculated thicknesses for these attenuation rates were 0.03, 0.08, 0.21, and 0.33 mm, respectively. For 100 kVp, the values were 0.05, 0.12, 0.30, and 0.50 mm. Similarly, for 120 kVp, they were 0.06, 0.14, 0.38, and 0.56 mm. Lastly, at 140 kVp, the corresponding thicknesses were 0.08, 0.16, 0.42, and 0.61 mm. Measurements were conducted to validate the calculated lead thicknesses. The radiation generator employed was the GE Healthcare Discovery XR 656, and the dosimeter used was the IBA MagicMax. The experimental results showed that at 80 kVp, the attenuation rates for different thicknesses were 43.56, 70.33, 89.85, and 93.05%, respectively. Similarly, at 100 kVp, the rates were 52.49, 72.26, 86.31, and 92.17%. For 120 kVp, the attenuation rates were 48.26, 71.18, 87.30, and 91.56%. Lastly, at 140 kVp, they were measured 50.45, 68.75, 89.95, and 91.65%. Upon comparing the simulation and experimental results, it was confirmed that the differences between the two values were within an average of approximately 3%. These research findings serve to validate the reliability of Monte Carlo simulations and could be employed as fundamental data for future radiation shielding facility construction.

Evaluation of Standardized Uptake Value applying Prompt Gamma Correction on 68Ga-DOTATOC PET/CT Image (68Ga-DOTATOC PET/CT에서 Prompt Gamma Correction을 적용한 SUV의 평가)

  • Yoon, Seok Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • $^{68}Ga$ was eluted from a $^{68}Ge/^{68}Ga$ radionuclide generator. $^{68}Ga$ decays into $^{68}Zn$, with a half life=67.8min. The decay is 88.9 % by ${\beta}$+ and 11.1 % by EC. The main ${\beta}$+ decay (87.7 %) is to the ground level of $^{68}Zn$ and it is a pure positron emission branch. A small fraction decays ${\beta}$+ (1.2 %) into an excited level of $^{68}Zn$, which promptly decays into the ground level with a ${\gamma}$ (1.077 Mev). This can constitute prompt gamma contamination in the PET data, if the 1.077 Mev ${\gamma}$ has a scatter interaction in the patient, and generates a lower energy ${\gamma}$ in coincidence with the positron annihilation pair. The purpose of this study was to evaluate standardized uptake value(SUV) before and after applying prompt gamma rays correction on $^{68}Ga$-DOTATOC PET/CT image. Fifty patient underwent PET/CT 1 hour after injection of the $^{68}Ga$-DOTATOC. The SUVmax and SUVmean of lesions and normal tissues (Pituitary, Lung, Liver, Spleen, Kidney, Intestine) were evaluated before and after applying prompt gamma correction on $^{68}Ga$-DOTATOC PET/CT image. Additionally, the SUVmax of each lesions and SUVmean of the soft tissues were measured on images. and target to background ratios (TBR) were calculated as quantitative indices. Among 15 patients, 25 of lesions (Pancreas, Liver, Thoracic Spine, Brain) with increased uptake on $^{68}Ga$-DOTATOC PET/CT image. SUVmax and SUVmean were increased in lesion site and normal tissue after prompt gamma rays correction. TBR was $51.51{\pm}49.28$ and $55.50{\pm}53.12$ before and after prompt gamma rays correction, respectively. (p<0.0001)

Development of Prism Dot-sight Combined with Thermal Imaging Camera (열영상 카메라가 결합된 프리즘 도트사이트 개발)

  • Park, Seung-Hwan;Jung, Bo-Seon;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2014
  • Purpose: This study relates to the development of the prism dot-sight combined with the thermal imaging camera. Methods: We have placed a reflector designed to the doublet type in the front of a BS (beam splitting) prism, have placed an OLED panel and a dot reticle generator to the top and bottom of the reflecting surface of the BS prism, and have placed a detachable magnifier between the BS prism and the observer by which the observer can see the magnified image of the OLED panel. By doing this, we were able to configure the new type prism dot-sight combined with the thermal imaging camera. Results: By placing the removable magnifier designed with a new type between the BS prism and the observer, we could design the new type prism dot-sight which performs the role of the dot sight by removing the magnifier during the day-time, and performs the role of the night scope during the night-time by which we can observe the enlarged image of the thermal imaging camera through the BS prism by attaching the removable magnifier. Conclusions: In this study, we have developed the prism dot-sight combined with the thermal imaging camera which is able to play the role of the day or night scope selectively, by disposing the designed magnifier characterized by the focal length of 44 mm, the viewing angle of ${\pm}7.0^{\circ}$, and the MTF value of 0.5 or more at the criterion of 50 lp/mm and the 0.7 field between the BS prism and the observer. By doing so, we could design and fabricate the new type prism dot-sight combined with the thermal imaging camera which can further increase the rapidity of firing and provide more convenience in the mounting of a firearm than the detachable combination of an existing dot sight and an existing night scope.

Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC (고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구)

  • Hong, Suck Joo;Lim, Mun Sup;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.656-662
    • /
    • 2007
  • Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as $H_2$ supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). $H_2$ selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the $O_2/C$ ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was $672^{\circ}C$ and input power 1.1 kJ/L, the production of $H_2$ was maximized 41.1%. And $CH_4$ conversion rate, $H_2$ yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the $O_2/C$ ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, $235^{\circ}C$ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were $H_2$ 38%, CO<10 ppm, $N_2$ 36%, $CO_2$ 21% and $CH_4$ 4%.