• Title/Summary/Keyword: Energy efficient communication

Search Result 700, Processing Time 0.024 seconds

Stochastic Mobility Model Design in Mobile WSN (WSN 노드 이동 환경에서 stochastic 모델 설계)

  • Yun, Dai Yeol;Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1082-1087
    • /
    • 2021
  • In MANET(mobile ad hoc network), Mobility models vary according to the application-specific goals. The most widely used Random WayPoint Mobility Model(RWPMM) is advantageous because it is simple and easy to implement, but the random characteristic of nodes' movement is not enough to express the mobile characteristics of the entire sensor nodes' movements. The random mobility model is insufficient to express the inherent movement characteristics of the entire sensor nodes' movements. In the proposed Stochastic mobility model, To express the overall nodes movement characteristics of the network, the moving nodes are treated as random variables having a specific probability distribution characteristic. The proposed Stochastic mobility model is more stable and energy-efficient than the existing random mobility model applies to the routing protocol to ensure improved performances in terms of energy efficiency.

Design of In-Memory Computing Adder Using Low-Power 8+T SRAM (저 전력 8+T SRAM을 이용한 인 메모리 컴퓨팅 가산기 설계)

  • Chang-Ki Hong;Jeong-Beom Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.291-298
    • /
    • 2023
  • SRAM-based in-memory computing is one of the technologies to solve the bottleneck of von Neumann architecture. In order to achieve SRAM-based in-memory computing, it is essential to design efficient SRAM bit-cell. In this paper, we propose a low-power differential sensing 8+T SRAM bit-cell which reduces power consumption and improves circuit performance. The proposed 8+T SRAM bit-cell is applied to ripple carry adder which performs SRAM read and bitwise operations simultaneously and executes each logic operation in parallel. Compared to the previous work, the designed 8+T SRAM-based ripple carry adder is reduced power consumption by 11.53%, but increased propagation delay time by 6.36%. Also, this adder is reduced power-delay-product (PDP) by 5.90% and increased energy-delay- product (EDP) by 0.08%. The proposed circuit was designed using TSMC 65nm CMOS process, and its feasibility was verified through SPECTRE simulation.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

An Energy Awareness Congestion Control Scheme based on Genetic Algorithms in Wireless Sensor Networks (무선 센서 네트워크에서의 유전자 알고리즘 기반의 에너지 인식 트래픽 분산 기법)

  • Park, Jun-Ho;Kim, Mi-Kyoung;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.38-50
    • /
    • 2011
  • For energy-efficiency in Wireless Sensor Networks (WSNs), when a sensor node detects events, the sensing period for collecting the detailed information is likely to be short. The lifetime of WSNs decreases because communication modules are used excessively on a specific sensor node. To solve this problem, the TARP decentralized network packets to neighbor nodes. It considered the average data transmission rate as well as the data distribution. However, since the existing scheme did not consider the energy consumption of a node in WSNs, its network lifetime is reduced. The proposed scheme considers the remaining amount of energy and the transmission rate on a single node in fitness evaluation. Since the proposed scheme performs an efficient congestion control it extends the network lifetime. The simulation result shows that our scheme enhances the data fairness and improves the network lifetime by about 27% on average over the existing scheme.

Performance Evaluation of Multi-Hop Transmissions in IEEE 802.15.6 UWB WBAN (IEEE 802.15.6 UWB WBAN에서 다중 홉 전송에 대한 성능 평가)

  • Kim, Ho-Sung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1313-1319
    • /
    • 2017
  • In this paper, we evaluate the performance of multi-hop transmissions in IEEE 802.15.6 ultra wide band (UWB) wireless body area network (WBAN). The packet structure in the physical layer, and encoding and decoding are considered for multi-hop transmissions in IEEE 802.15.6 UWB WBAN. We analyze the data success rate and energy efficiency of multi-hop transmissions with considering the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Through simulations, we evaluate the data success rate and energy efficiency of multi-hop transmissions with varying the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Finally, we can select an energy-efficient multi-hop transmission in IEEE 802.15.6 UWB WBAN depending on the length of data payload, transmission power, and distances between the nodes.

Grid-based Energy Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 그리드 기반의 에너지 효율절인 라우팅 프로토콜)

  • Jung, Sung-Young;Lee, Dong-Wook;Kim, Jai-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.216-220
    • /
    • 2008
  • Sensor nodes in wireless network have several limitations such as lack of energy resource and network bandwidth. There are many researches to extend lifetime of sensor network and enhance availability. However, most of the previous researches didn't consider the mobile sink node. Those researches aren't suitable in the environment having mobile sinks. In this paper. we propose a scheme that reduces communication overheads and energy consumptions and improves reliability in routing path setup. Proposed scheme has excellent scalability without degrading performance in environment where many sink nodes exist and/or the network size is huge. Proposed scheme saves the energy consumption up to 70% in comparison with the previous grid-based and cluster-based protocol. As a result, proposed scheme increases the lifetime of sensor network and enhances availability of wireless sensor network.

Performance Modeling and Evaluation of IEEE 802.15.4 Collision Free Period for Batch Traffic (배치 트래픽 특성을 고려한 IEEE 802.15.4 비경합구간 성능 모델링 및 평가)

  • Kim, Tae-Suk;Choi, Duke Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.83-90
    • /
    • 2016
  • In this paper, we performed the analysis of transmission performance for Collision Free Period(CFP) supported by the low-power communication technology, IEEE 802.15.4 MAC (Media Access Control). For the analysis, periodic traffic, original service target of CFP, is considered and, according to the Quality of Service required, packet arrival pattern to MAC layer is categorized as batch and non-batch, and analysis on throughput, delay, and energy is performed for those patterns. On the basis of the obtained analysis, performance comparison with Collision Avoidance Period(CAP) is carried out for the health care applications that generate periodic traffic such as Pedometer, ECG, EMG. The evaluation confirms that CFP is more energy efficient for healthcare applications that generate periodic and time-critical traffic and moreover for the application with high bandwidth requirement CFP achieves up to 46% energy savings compared to CAP.

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.

Lightweight Model for Energy Storage System Remaining Useful Lifetime Estimation (ESS 잔존수명 추정 모델 경량화 연구)

  • Yu, Jung-Un;Park, Sung-Won;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.436-442
    • /
    • 2020
  • ESS(energy storage system) has recently become an important power source in various areas due to increased renewable energy resources. The more ESS is used, the less the effective capacity of the ESS. Therefore, it is important to manage the remaining useful lifetime(RUL). RUL can be checked regularly by inspectors, but it is common to be monitored and estimated by an automated monitoring system. The accurate state estimation is important to ESS operator for economical and efficient operation. RUL estimation model usually requires complex mathematical calculations consisting of cycle aging and calendar aging that are caused by the operation frequency and over time, respectively. A lightweight RUL estimation model is required to be embedded in low-performance processors that are installed on ESS. In this paper, a lightweight ESS RUL estimation model is proposed to operate on low-performance micro-processors. The simulation results show less than 1% errors compared to the original RUL model case. In addition, a performance analysis is conducted based on ATmega 328. The results show 76.8 to 78.3 % of computational time reduction.

Analysis and Design of Profiling Adaptor for XML based Energy Storage System (XML 기반의 에너지 저장용 프로파일 어댑터 분석 및 설계)

  • Woo, Yongje;Park, Jaehong;Kang, Mingoo;Kwon, Kiwon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.29-38
    • /
    • 2015
  • The Energy Storage System stores electricity for later use. This system can store electricity from legacy electric power systems or renewable energy systems into a battery device when demand is low. When there is high electricity demand, it uses the electricity previously stored and enables efficient energy usage and stable operation of the electric power system. It increases the energy usage efficiency, stabilizes the power supply system, and increases the utilization of renewable energy. The recent increase in the global interest for efficient energy consumption has increased the need for an energy storage system that can satisfy both the consumers' demand for stable power supply and the suppliers' demand for power demand normalization. In general, an energy storage system consists of a Power Conditioning System, a Battery Management System, a battery cell and peripheral devices. The specifications of the subsystems that form the energy storage system are manufacturer dependent. Since the core component interfaces are not standardized, there are difficulties in forming and operating the energy storage system. In this paper, the design of the profile structure for energy storage system and realization of private profiling system for energy storage system is presented. The profiling system accommodates diverse component settings that are manufacturer dependent and information needed for effective operation. The settings and operation information of various PCSs, BMSs, battery cells, and other peripheral device are analyzed to define profile specification and structure. A profile adapter software that can be applied to energy storage system is designed and implemented. The profiles for energy storage system generated by the profile authoring tool consist of a settings profile and operation profile. Setting profile consists of configuration information for energy device what composes energy saving system. To be more specific, setting profile has three parts of category as information for electric control module, sub system, and interface for communication between electric devices. Operation profile includes information in relation to the method in which controls Energy Storage system. The profiles are based on standard XML specification to accommodate future extensions. The profile system has been verified by applying it to an energy storage system and testing charge and discharge operations.