• Title/Summary/Keyword: Energy distribution

Search Result 5,762, Processing Time 0.036 seconds

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Improvements on Speech Recognition for Fast Speech (고속 발화음에 대한 음성 인식 향상)

  • Lee Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2006
  • In this Paper. a method for improving the performance of automatic speech recognition (ASR) system for conversational speech is proposed. which mainly focuses on increasing the robustness against the rapidly speaking utterances. The proposed method doesn't require an additional speech recognition task to represent speaking rate quantitatively. Energy distribution for special bands is employed to detect the vowel regions, the number of vowels Per unit second is then computed as speaking rate. To improve the Performance for fast speech. in the pervious methods. a sequence of the feature vectors is expanded by a given scaling factor, which is computed by a ratio between the standard phoneme duration and the measured one. However, in the method proposed herein. utterances are classified by their speaking rates. and the scaling factor is determined individually for each class. In this procedure, a maximum likelihood criterion is employed. By the results from the ASR experiments devised for the 10-digits mobile phone number. it is confirmed that the overall error rate was reduced by $17.8\%$ when the proposed method is employed

Conductive Rubber for Enhanced Safety in Hydrogen-based Facilities from Electrostatic Discharge (도전성 고무 매트를 이용한 수소 기반 시설에서 제전 신뢰성 향상)

  • S. Lee;J. Ko;J. Song;C. Kim;C. Kim;H. S. Kim;M. E. Hur;Chung J. H.;H. J. Song
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • Hydrogen-based electricity and transportation systems are widely recognized as sustainable power sources. However, the low ignition energy of hydrogen, only 1/10th that of conventional fossil fuels, poses a safety concern involving the risk of ignition due to electrostatic discharge from facility workers. Therefore, anti-static systems are imperative for hydrogen-based electricity facilities. To address this, we propose a reliable conductive rubber mat (CRM) to ensure the safety of these facilities. Unlike conventional anti-static floors that utilize conductive paint (CP), the CRM features a uniform distribution of conductive components in chemically and mechanically stable rubber. As a result, the CRM is unyielding to polar solvents (such as ethanol and hydrosulfuric acid) and non-polar solvents (like mineral oil) without increasing its resistance. Moreover, the CRM can withstand mechanical stress. Consequently, the human-body voltage of workers on the CRM would be sufficiently low enough to protect them from hydrogen explosions, thereby enhancing overall safety.

In-depth investigation of natural convection thermal characteristics of BALI experiment through Eulerian computational fluid dynamics code and comparison with Lagrangian code

  • Hyeongi Moon;Sohyun Park;Eungsoo Kim;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • In-vessel retention through external reactor vessel cooling (IVR-ERVC) is a severe accident management (SAM) strategy that has been adopted and used in many nuclear reactors such as AP1000, APR1400, and light water reactor etc. Some reactor accidents have raised concerns about nuclear reactors among residents, leading to a decrease in residents' acceptability and many studies on SAM are being conducted. Experiments on IVR-ERVC are almost impossible due to its specificity, so fluid characteristics are analyzed through BALI experiments with similar condition. In this study, computational fluid dynamics (CFD) via Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) for BALI experiments were performed. Steady-state CFD analysis was performed on three turbulence models, and SST k-ω model was in good agreement with the experimental measurement temperature within the maximum error range of 1.9%. LES CFD analysis was performed based on the RANS analysis results and it was confirmed that the temperature and wall heat flux for depth was consistent within an error range of 1.0% with BALI experiment. The LES CFD analysis results were compared with those of the Lagrangian-based solver. LES matched the temperature distribution better than SOPHIA, but SOPHIA calculated the position of boundary between stratified layer and convective layer more accurately. On the other hand, Lagrangian-based solver predicted several small eddy behaviors of the convective layer and LES predicted large vortex behavior. The vibration characteristics near the cooling part of the BALI experimental device were confirmed through Fast Fourier Transform (FFT) investigation. It was found that the power spectral density for pressure at least 10 times higher near the side cooling than near the top cooling.

Distribution and diversity of rhizosphere bacteria of mixed halophytes vegetation native to the Goraebul sand dune, Korea : Approaches to coastal dune conservation (한반도 고래불 해안사구에 자생하는 혼합 염생식물군락 근권세균의 분포 및 다양성 고찰 : 해안사구 보전을 위한 접근)

  • Jong Myong Park;Ji Won Hong;Ki-Eun Lee;Jong-Guk Kim;Young-Hyun You
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Coastal dunes must be conserved. Their native halophytes support coastal geography while their symbiotic microorganisms help vegetation thrive. The Goraebul coast has the largest, well-conserved dune system on the East Sea of the Korean Peninsula due to a climax mixed halophyte (C. soldanella, C. kobomugi, and E. mollis) vegetation support. This study identified rhizobacteria and their diversity in mixed halophyte communities unique to Goraebul. Five phyla, 12 genera, and 21 species were identified based on 16S rDNA sequences from 65 isolates. The phylum Bacillota, class Bacillota, order Bacillales, and family Bacillaceae were identified, with Bacillus as the dominant genus (46.15%). The richness and Shannon's diversity were higher at the species than at the genus level due to the dominance of Bacillus; however, various Bacillus species (7) were identified. Therefore, the climax mixed vegetation adapted to the Goraebul coast may exert natural selection pressure in favor of the common characteristics of Bacillus. However, despite this advantage, the Shannon equitability (0.86), Simpson (0.08), and Shannon diversity (2.79) indexes indicate a stable rhizosphere cluster and the climax mixed vegetation is affected by symbiotic relationships between healthy rhizosphere microbiota.

Impact, management, and use of invasive alien plant species in Nepal's protected area: a systematic review

  • Sunita Dhungana;Nuttaya Yuangyai;Sutinee Sinutok
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.182-195
    • /
    • 2024
  • Background: Invasive alien plant species (IAP) significantly threaten Nepal's protected areas and local communities. Understanding their distribution, impact, management, and utilization is essential for developing effective management strategies and sustainable utilization practices. The systematic literature review of publications from 2010 to 2023. The search was conducted through the database Nepal Journal online database (NepJOL) and Google Scholar, yielding an initial pool of 4,304 publication. After applying inclusion and exclusion criteria; we meticulously reviewed 43 articles for data extraction. Results: Seventeen IAP are found in protected area, Nepal with the highest prevalence observed in Koshi Tappu Wildlife Reserve, followed by Chitwan and Sukhlaphanta National Park. The most problematic species in terrestrial ecosystems are Mikania micrantha, Lantana camara, and Chromolaena odorata. The grassland ecosystems of wildlife habitats, primarily in the Terai and Siwalik regions, are the most invaded. Various management approaches are employed to mitigate the spread and impact of IAP, including mechanical methods such as uprooting, burning, and cutting. However, these methods are costly, and context-specific interventions are needed. The study also explores the potential use of IAP for economic, ecological, or cultural purposes, such as medicinal properties, energy production potential, and economic viability. Local communities utilize these plants for animal bedding, mulching, green manure, briquette, and charcoal production. Conclusions: Applying silvicultural practices alongside mechanical management is recommended to maintain a healthy terrestrial ecosystem and utilize the removed biomass for valuable products, thereby reducing removal costs and increasing income sources, potentially benefitting both local communities and wildlife in protected areas.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Poly(Imide) Separator Functionalized by Melamine Phosphonic Acid for Regulating Structural and Thermal Stabilities of Lithiumion Batteries

  • Ye Jin Jeon;Juhwi Park;Taeeun Yim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.365-372
    • /
    • 2024
  • As the energy density of lithium-ion batteries (LIBs) continues to increase, various separators are being developed to with the aim of improving the safety performance. Although poly(imide) (PI)-based separators are widely used, it is difficult to control their pore size and distribution, and this may further increase the risk associated. Herein, a melamine phosphonic acid (MP)-coated PI separator that can effectively control the pore structure of the substrate is suggested as a remedy. After the MP material is embedded into the PI separator with a simple one-step casting process, it effectively clogs the large pores of the PI separator, preventing the occurrence of internal short circuits during charging. It is anticipated that the MP material can also suppress rapid thermal runaway upon cycling due to its ability to reduce the internal temperature of the LIB cell caused by the desirable endothermic behavior around 300℃. According to experiments, the MP-coated PI separator not only decreases the thermal shrinkage rate better than commercial poly(ethylene) (PE) separators but also exhibits a desirable Gurley number (109.6 s/100 cc) and electrolyte uptake rate (240%), which is unique. The proposed separator is electrochemically stable in the range 0.0-5.0 V (vs. Li/Li+), which is the typical working potential of conventional electrode materials. In practice, the MP-coated PI separator exhibits stable cycling performance in a graphite-LiNi0.83Co0.10Mn0.07O2 full cell without an internal short circuit (retention: 90.3%).

Structural Analysis of Composite Wind Blade Using Finite Element Technique (유한요소기법을 이용한 복합재 풍력 블레이드 구조해석)

  • Unseong Kim;Kyeongryeol Park;Seongmin Kang;Yong Seok Choi;Kyungeun Jeong;Soomin Lee;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.133-138
    • /
    • 2024
  • This study evaluates the structural safety of wind turbine blades, analyzes the behavior of composite laminate structures with and without defects, and assesses surface erosion wear. The NREL 5 MW standard is applied to assign accurate composite material properties to each blade section. Modeling and analysis of the wind turbine blades reveal stable behavior under individual load conditions (gravity, motor speed, wind speed), with the web bearing most of the load. Surface erosion wear analysis in which microparticle impacts are simulated on the blade coating shows a maximum stress and maximum displacement of 14 MPa and 0.02 mm, respectively, indicating good initial durability, but suggest potential long-term performance issues due to cumulative effects. The study examines defect effects on composite laminate structures to compare the stress distribution, strain, and stiffness characteristics between normal and cracked states. Although normal conditions exhibit stable behavior, crack defects lead to fiber breakage, high-stress concentration in the vulnerable resin layer, and decreased rigidity. This demonstrates that local defects can compromise the safety of the entire structure. The study utilizes finite element analysis to simulate various load scenarios and defect conditions. Results show that even minor defects can significantly alter stress distributions and potentially lead to catastrophic failure if left unaddressed. These findings provide valuable insights for wind turbine blade safety evaluations, surface protection strategies, and composite structure health management. The methodology and results can inform the design improvements, maintenance strategies, and defect detection techniques of the wind energy industry.

Performance of different absorber materials and move-in/out strategies for the control rod in small rod-controlled pressurized water reactor: A study based on KLT-40 model

  • Zhiqiang Wu;Jinsen Xie;Pengyu Chen;Yingjie Xiao;Zining Ni;Tao Liu;Nianbiao Deng;Aikou Sun;Tao Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2756-2766
    • /
    • 2024
  • Small rod-controlled pressurized water reactors (PWR) are the ideal energy source for vessel propulsion, benefiting from their high reactivity control efficiency. Since the control rods (CRs) increase the complexity of reactivity control, this paper seeks to study the performance of CRs in small rod-controlled PWRs to extend the lifetime and reduce power offset due to CRs. This study investigates CR grouping, move-in/out strategies, and axially non-uniform design effects on core neutron physics metrics. These metrics include axial offset (AO), core lifetime (CL), fuel utilization (FU), and radial power peaking factor (R-PPF). To simulate the movement of the CRs, a "Critical-CR-burnup" function was developed in OpenMC. In CR designs, the CRs are grouped into three banks to study the simultaneous and prioritized move-in/out strategies. The results show CL extension from 590 effective full power days (EFPDs) to 638-698 EFPDs. A lower-worth prioritized strategy minimizes AO and the extremum values decrease from -0.69 and + 0.81 to -0.28 and + 0.51. Although an axially non-uniform CR design can improve AO at the beginning of cycle (BOC), considering the overall CR worth change is crucial, as a significant decrease can adversely impact axial power distribution during the middle of cycle (MOC).