• Title/Summary/Keyword: Energy dispersive spectrometer

Search Result 193, Processing Time 0.027 seconds

Discrimination of Geographical Origin for Scutellaria baicalensis Using Energy Dispersive X-ray Fluorescence Spectrometer (에너지 분산형 X-선 형광분석기를 이용한 황금의 원산지 판별)

  • Moon, Ji-Young;Lee, Ye-Ji;Kang, Jung-Mi;Cho, Soon-Jun;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.484-487
    • /
    • 2012
  • A discrimination technique for domestic and imported Scutellaria baicalensis was developed using an energy dispersive X-ray fluorescence spectrometer (ED-XRF). Mineral content ratios, of a total of 43 species, including P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn, were measured among 204 samples. Macro element content ratios and trace element content ratios were determined using the standardless fundamental parameters (SLFP) analysis. Inorganic element ratios of P, S, K, Ca, Cl, Mn, and Fe were significantly different between domestic and imported samples. The result from the canonical discriminant analysis showed that the accuracy of geographical origin discrimination was 95.15%; the correlation coefficient was 0.888. It was concluded that this technique could be used as a useful method in discriminating the geographical origins between domestic and imported Scutellaria baicalensis.

Analysis of Titanium Surface Characteristics according to Laser Beam Marking Conditions (레이저빔 마킹 조건에 따른 티타늄 표면특성 분석)

  • Shin, HongShik
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.39-43
    • /
    • 2013
  • Titanium has been used to satisfy various applications such as bio engineering, aerospace, electronics, automobile. Recently, micro fabrication technologies of metals such as titanium have been required to satisfy many conditions in various fields. To satisfy these demands, micro electrochemical process using laser marking can be an alternative method because it is one of the precision machining and efficient process. Micro electrochemical process using laser marking needs to accomplish form of the oxidized recast layer on metal surface by laser marking. The laser beam marking conditions such as average power, pulse repetition rate and marking speed should be properly selected to form oxidized recast layer. So, the characteristics of titanium surface according to laser marking conditions was investigated through SEM(scanning electron microscope), EDS(energy dispersive spectrometer) and surface roughness analysis.

  • PDF

Physicochemical Characteristics of Particulate Matter Emitted from Aluminum Casting Process (알루미늄 주조과정에서 배출되는 입자상물질의 물리·화학적 특성)

  • Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.33 no.5
    • /
    • pp.297-304
    • /
    • 2024
  • PM (Particulate Matters) was collected from a bag filter dust collector at an aluminum foundries, and its physicochemical properties were investigated using particle size analyzer and scanning electron microscopy with energy dispersive X-ray spectrometer (SEM/EDS). The median volume diameter of the particles passing through the pretreatment dust collector of the cyclone was approximately 10 ㎛. The cyclone pretreatment dust collector was shown to significantly reduce the throughput of large particles with a particle size of 100 ㎛ or more. The chemical composition of the particles showed a high Al content, and trace amounts of Mg, Si, and Zn were detected.

Properties of Black Walnut hull Extracts with Extractive Conditions (추출조건에 따른 호두외피추출물의 특성)

  • Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.465-470
    • /
    • 2006
  • Walnut hull is a by-product from the Walnut tree, used as natural dyestuff from ancient times. This study was done to examine the effects of extractive conditions on the properties of walnut hull extracts for making efficient use of the walnut hull as a natural colorant. Aqueous extracts of walnut hull were prepared at various extractive concentration, temperature and time. Then they were characterized using UV-Vis. Spectrophotometer, FT-IR Spectrometer, Prep Liquid Chromatography, and Energy dispersive X-ray spectrometer. The aqueous extracts have two absorbency peaks of UV-Vis. Spectrum, shoulder type peak in the range of 270-280 nm and broad type band around 420 nm. Intensity of absorbency is increased with increase of extraction concentration and time. However, Boiling temperature extraction method showed the most efficiency of all. Intensity of absorbency is also affected by extraction pH. The Prep LC examined two kinds of isolated colorant with different molecular weight. FT-IR spectra of hull extracts showed an absorption band around $3400cm^{-1}$, the peaks at $1700-1600cm^{-1}$, which are characteristic of aromatic compounds with unsaturated ketone and benzene ring. It showed that the extraction contained some mineral ions, such as K, Ca, Si, Mg.

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

Two Dimensional Gold Nanodot Arrays Prepared by Using Self-Organized Nanostructure

  • Jung Kyung-Han;Chang Jeong-Soo;Kwon Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.246-250
    • /
    • 2006
  • Highly ordered gold nanodot arrays have been successfully obtained by vacuum evaporation using an anodic aluminum oxide (AAO) as a shadow mask. An AAO mask with the thickness of 300 um was prepared through an anodization process. The structure of the nanodot arrays was studied by a field- emission scanning electron microscope (FE-SEM) equipped with an energy dispersive spectrometer (EDS). A tapping mode atomic force microscope (AFM) was employed for studies of height and phase feature. The nanodot arrays were precisely reproduced corresponding to the hexagonal structure of the AAO mask in a large area. In the gold nanodot arrays, the average diameter of dots is approximately the same as the AAO pore size in the range from 70 um to 80 nm and 100 nm center-to-center spacing. EDS analysis indicated that the gold dots were almost entirely consisted of gold, a highly demanded material.

Mechanical and metallurgical properties of diffusion bonded AA2024 Al and AZ31B Mg

  • Mahendran, G.;Balasubramanian, V.;Senthilvelan, T.
    • Advances in materials Research
    • /
    • v.1 no.2
    • /
    • pp.147-160
    • /
    • 2012
  • In the present study, diffusion bonding was carried out between AZ31B magnesium and AA2024 aluminium in the temperature range of $405^{\circ}C$ to $475^{\circ}C$ for 15 min to 85 min and 5MPa to 20 MPa uniaxial loads was applied. Interface quality of the joints was assessed by microhardness and shear testing. Also, the bonding interfaces were analyzed by means of optical microscopy, scanning electron microscopy, energy dispersive spectrometer and XRD. The maximum bonding and shear strength was obtained at $440^{\circ}C$, 12 MPa and 70 min. The maximum hardness values were obtained from the area next to the interface in magnesium side of the joint. The hardness values were found to decrease with increasing distance from the interface in magnesium side while it remained constant in aluminium side. It was seen that the diffusion transition zone near the interface consists of various phases of $MgAl_2O_4$, $Mg_2SiO_4$ and $Al_2SiO_5$.

박막 트랜지스터 채널용 IGZO 박막의 제작

  • Kim, Dae-Hyeon;Kim, Sang-Mo;Choe, Hyeong-Uk;Choe, Yeong-Gyu;Kim, Gyeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.137-137
    • /
    • 2009
  • Indium Gallium Zinc Oxide (IGZO) thin films for TFT channel were prepared by using a Facing Target Sputtering (FTS) system. To investigate the effect of oxygen on the optical and the electrical properties of amorphous InGaZnO(a-IGZO), we prepared thin films by FTS system in various oxygen atmospheres at room temperature. As-deposited IZTO thin films were investigated by using a UV/VIS spectrometer, an X-ray diffractometer, a Hall Effect measurement system, and an atomic force microscope. The quantitative analysis of the films was carried out by using the energy dispersive X-ray (EDX) technique for the as-deposited film.

  • PDF

Investigation of shinning Spot Defect on Hot-Dip Galvanized Steel Sheets

  • Liu, Yonggang;Cui, Lei
    • Corrosion Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.125-129
    • /
    • 2014
  • Shinning spot defects on galvanized steel sheets were studied by optical microscope, scanning electron microscope(SEM), Energy Dispersive Spectrometer (EDS) and Laser-Induced Breakdown Spectroscopy Original Position Statistic Distribution Analysis (LIBSOPA) in this study. The research shows that the coating thickness of shinning spot defects which caused by the substrate defect is much lower than normal area, and when skin passed, the shinning spot defect area can not touch with skin pass roll which result in the surface of shinning spot is flat while normal area is rough. The different coating morphologies have different effects on the reflection of light, which cause the shinning spot defects more brighter than normal area.

Effect of Recycling Time on Stability of Colloidal Silica Slurry and Removal Rate in Silicon Wafer Polishing (연마 Recycling 시간에 따른 콜로이드 실리카 슬러리의 안정성 및 연마속도)

  • Choi, Eun-Suck;Bae, So-Ik
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.98-102
    • /
    • 2007
  • The stability of slurry and removal rate during recycling of colloidal silica slurry was evaluated in silicon wafer polishing. The particle size distribution, pH, and zeta potential were measured to investigate the stability of colloidal silica. Large particles appeared as recycling time increased while average size of slurry did not change. Large particles were identified by EDS(energy dispersive spectrometer) as foreign substances from pad or abraded silicon flakes during polishing. As the recycling time increased, pH of slurry decreased and removal rate of silicon reduced but zeta potential decreased inversely. Hence, it could be mentioned that decrease of removal rate is related to consumption of $OH^-$ ions during recycling. Attention should be given to the control of pH of slurry during polishing.