• Title/Summary/Keyword: Energy dispersive X-ray spectroscopy(EDS)

Search Result 301, Processing Time 0.025 seconds

Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 물질전과정평가 (Material Life Cycle Assessment on Mg2NiHx-5 wt% CaO Hydrogen Storage Composites)

  • 신효원;황준현;김은아;홍태환
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.107-114
    • /
    • 2021
  • Mg2NiHx-5 wt% CaO 수소 저장 복합재료의 합성 공정에 대한 환경 영향 특성을 분석하기 위해 물질전과정평가(material life cycle assessment, MLCA)를 수행하였다. MLCA는 Gabi 소프트웨어를 사용하였으며, Eco-Indicator 99' (EI99)와 CML 2001 방법론을 기반으로 하여 분석하였다. Mg2NiHx-5 wt% CaO 복합재료는 수소 가압형 기계적 합금화법(hydrogen induced mechanical alloying, HIMA)에 의해 합성되었다. X-선 회절분석기(X-ray diffraction, XRD), 주사전자현미경(scanning electron microscopy, SEM), 에너지 분산형 X-선 분광법(energy dispersive X-ray spectroscopy, EDS), 비표면적 분석(Bruner-Emmett-Teller, BET), 열중량 분석(thermogravimetric analysis, TGA)을 이용하여 복합재료의 야금학적, 열화학적 특성을 분석하였다. CML 2001 및 EI99 방법론을 토대로 MLCA를 수행하여 분석한 정규화 결과, Mg2NiHx-5 wt% CaO 복합재료는 지구온난화(GWP)와 화석연료의 환경 부하 값에서 가장 높은 수치를 나타내었다. 이는 CaO 첨가에 따른 제조 공정에서의 추가적인 전기 사용으로 인한 것으로 판단된다. 따라서 향후 합금 설계 시에 제조 공정 시간 단축을 통한 공정 최적화 및 친환경적인 대체물질을 탐구하여 환경적인 요인을 고려한 연구를 모색해 볼 필요가 있다.

Hydroxyapatite가 도핑된 Ti-6Al-4V 구형 분말의 전기방전 소결 및 소결체 특성에 관한 연구 (A Study of Electro-Discharge-Sintering of Ti-6Al-4V Spherical Powders Doped with Hydroxyapatite by Spex Milling and Its Consolidation Characteristics)

  • 조유정;김영훈;조예현;김민재;김현수;김승우;박정환;이원희
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.376-381
    • /
    • 2013
  • Spherical Ti-6Al-4V powders in the size range of 250 and 300 ${\mu}m$ were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

고온, 고압 알칼리 수용액에서의 Alloy 600 산화막 특성에 미치는 납 농도 영향 (Effect of Lead Concentration on Surface Oxide Formed on Alloy 600 in High Temperature and High Pressure Alkaline Solutions)

  • 김동진;김현욱;문병학;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제11권3호
    • /
    • pp.96-102
    • /
    • 2012
  • 0.1 M NaOH 용액에 PbO첨가양이 증가함에 따라 Alloy 600에 형성되는 산화막의 부동태 피막 특성이 열화되었다. 또한 뚜렷한 2중층 구조의 산화막이 점차 사라지고, 산화막내 존재하는 납의 양이 증가하였다. 산화막 내부 납의 양이 증가함에 따라 산화막 내부 니켈의 결핍이 점차 커졌다. 납에 의해 산화막의 부동태 특성이 약화됨에 따라, 응력부식균열 저항성 또한 급감하였을 것으로 판단된다.

Synthesis of Biosurfactant-Based Silver Nanoparticles with Purified Rhamnolipids Isolated from Pseudomonas aeruginosa BS-161R

  • Kumar, C. Ganesh;Mamidyala, Suman Kumar;Das, Biswanath;Sridhar, B.;Devi, G. Sarala;Karuna, Mallampalli SriLakshmi
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1061-1068
    • /
    • 2010
  • The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R, and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- and two-dimensional $^1H$ and $^{13}C$ NMR, FT-IR, and HR-MS spectral data. Purified rhamnolipids in a pseudoternary system of n-heptane and water system along with n-butanol as a cosurfactant were added to the aqueous solutions of silver nitrate and sodium borohydride to form reverse micelles. When these micelles were mixed, they resulted in the rapid formation of silver nanoparticles. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The nanoparticles formed had a sharp adsorption peak at 410 nm, which is characteristic of surface plasmon resonance of the silver nanoparticles. The nanoparticles were monodispersed, with an average particle size of 15.1 nm (${\sigma}={\pm}5.82$ nm), and spherical in shape. The EDS analysis revealed the presence of elemental silver signal in the synthesized nanoparticles. The formed silver nanoparticles exhibited good antibiotic activity against both Grampositive and Gram-negative pathogens and Candida albicans, suggesting their broad-spectrum antimicrobial activity.

A Study of Upgrading Real Biogas via CO2 Precipitation Route Under Indian Scenario

  • Gehlaut, Avneesh Kumar;Gaur, Ankur;Hasan, Shabih Ul;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.381-387
    • /
    • 2018
  • Our study focuses on upgrading real biogas obtained under Indian scenario using carbon capture and utilization (CCU) technology to remove carbon dioxide ($CO_2$) and utilize it by forming metal carbonate. Amines such as monoethanolamine (MEA), diethanolamine (DEA), and sodium hydroxide (NaOH) were used to rapidly convert gaseous $CO_2$ to aqueous $CO_2$, and $BaCl_2$ was used as an additive to react with the aqueous $CO_2$ and rapidly precipitating the aqueous $CO_2$. All experiments were conducted at $25^{\circ}C$ and 1 atm. We analyzed the characteristics of the $BaCO_3$ precipitates using X-ray diffractometry (XRD), scanning electron microscopy - Energy dispersive spectroscopy (SEM-EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses. The precipitates exhibited witherite morphology confirmed by the XRD results, and FT-IR confirmed that the metal salt formed was $BaCO_3$, and EDS showed that there were no traces of impurities present in it. The quantity of the $BaCO_3$ was larger when formed with DEA. Also, a comparison was done with a previous study of ours conducted in Korean conditions. Finally, we observed that the carbonate obtained using real biogas showed similar properties to carbonates available in the market. An economic analysis was done to show the cost effectiveness of the method employed by us.

수산화마그네슘의 합성과 솔비톨계 계면활성제를 이용한 표면개질 (Synthesis of Magnesium Hydroxide and Surface Modification by Sorbitol Surfactants)

  • 강국현;현미호;유건성;이동규
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.92-100
    • /
    • 2014
  • 비이온계면활성제 가운데 솔비톨계 계면활성제인 Span을 이용해 수열합성법으로 수산화마그네슘을 합성하였다. 수산화마그네슘 합성의 전구체는 염화마그네슘과 수산화나트륨을 사용하였다. 비이온 계면활성제는 안정제와 분산제 그리고 표면 개질제로 적용하였다. 비이온 계면활성제를 첨가하였을 경우 수산화마그네슘 입자는 좀 더 작고 균일한 크기와 좋은 분산성을 나타내었으며, 소수성 성질을 나타내었다. 합성된 입자의 특성은 PSA, SEM, EDS, XRD 그리고 FT-IR을 통해 확인하였다. 기기 분석을 통해 개질 전과 후의 수산화마그네슘의 소수성, 분산성 특성을 비교하였다. 또한 실험조건에 따라 수산화마그네슘 입자의 표면 개질 특성 변화를 확인하였다.

SURFACE CHARACTERISTICS AND BIOLOGICAL RESPONSES OF HYDROXYAPATITE COATING ON TITANIUM BY HYDROTHERMAL METHOD: AN IN VITRO STUDY

  • Kim, Dong-Seok;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jun
    • 대한치과보철학회지
    • /
    • 제43권3호
    • /
    • pp.363-378
    • /
    • 2005
  • Statement of problem. Hydroxyapatite(HA) coated titanium surfaces have not yet showed the reliable osseointegration in various conditions. Purpose. This study was aimed to investigate microstructures, chemical composition, and surface roughness of the surface coated by the hydrothermal method and to evaluate the effect of hydrothermal coating on the cell attachment, as well as cell proliferation. Material and Methods. Commercially pure(c.p.) titanium discs were used as substrates. The HA coating on c.p. titanium discs by hydrothermal method was performed in 0.12M HCl solution mixed with HA(group I) and 0.1M NaOH solution mixed with HA(group II). GroupⅠ was heated at 180 $^{\circ}C$ for 24, 48, and 72 hours. GroupⅡ was heated at 180 $^{\circ}C$ for 12, 24, and 36 hours. And the treated surfaces were evaluated by Scanning electron microscopy(SEM), Energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction method(XRD), Confocal laser scanning microscopy(CLSM). And SEM of fibroblast and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay were used for cellular responses of the treated surfaces. Results. The color of surface changed in both groups after the hydrothermal process. SEM images showed that coating pattern was homogeneous in group II, while inhomogeneous in group I. H72 had rosette-like precipitates. The crystalline structure grew gradually in group II, according to extending treatment period. The long needle-like crystals were prominent in N36. Calcium(Ca) and phosphorus(P) were not detected in H24 and H48 in EDS. In all specimens of group II and H72, Ca was found. Ca and P were identified in all treated groups through the analysis of XPS, but they were amorphous. Surface roughness did not increase in both groups after hydrothermal treatment. The values of surface roughness were not significantly different between groups I and II. According to the SEM images of fibroblasts, cell attachments were oriented and spread well in both treated groups, while they were not in the control group. However, no substantial amount of difference was found between groups I and II. Conclusions. In this study during the hydrothermal process procedure, coating characteristics, including the HA precipitates, crystal growth, and crystalline phases, were more satisfactory in NaOH treated group than in HCl treated group. Still, the biological responses of the modified surface by this method were not fully understood for the two tested groups did not differ significantly. Therefore, more continuous research on the relationship between the surface features and cellular responses seems to be in need.

Mn-V2O5/TiO2 촉매의 NH3에 의한 NO의 저온 선택적 촉매환원 (Low-Temperature Selective Catalytic Reduction of No with NH3 over Mn-V2O5/TiO2)

  • 최상기;최성우
    • 한국환경과학회지
    • /
    • 제15권4호
    • /
    • pp.333-340
    • /
    • 2006
  • A (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst were prepared by co-precipitation method and used for low-temperature selective catalytic reduction (SCR) of $NO_x$ with ammonia in the presence of oxygen. The properties of the catalysts were studied by X-ray diffraction (XRD), temperature programmed reduction (TPR) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS). The experimental results showed that (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst yielded 81% NO conversion at temperature as low as $150^{\circ}C$ and a space velocity of $2,400\;h^{-1}$. Crystalline phase of $Mn_{2}O_3$ was present at ${\ge}\;15%$ Mn on $V_{2}O_{5}/TiO_{2}$. XRD confirmed the presence of manganese oxide ($Mn_{2}O_{3}$) at $2{\theta}=32.978^{\circ}(222)$. The XRD patterns presented of (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ did not show intense or sharp peaks for manganese oxides and vanadia oxides. The TPR profiles of (5 wt.%)Mn-(1 wt.%)$V_{2}O_{5}/TiO_{2}$ catalyst showed main reduction peat of a maximum at $595^{\circ}C$.

ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구 (Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO)

  • 박소영;이세형;박찬영;백동기;이문석
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.