• Title/Summary/Keyword: Energy density

Search Result 5,744, Processing Time 0.038 seconds

미래형 대형풍력발전기 개발 추세 (Europe 지역의 Case Study)

  • 오철수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.271-277
    • /
    • 1998
  • 1. Why Wind Power\ulcorner Advantages of Wind Energy : free cost, non-pollutant, free waste large unit is possible Disadvantages : intermittent of energy density limited sites Unit Capacity of various Power Plant Solar PP : 10 - 500㎾ Wind PP : 200 - 2000 ㎾ Nuclear PP 700 - 1000 MW Installation Cost of Power Plants Nuclear PP : $ 2,500/㎾ Solar PP : $ 6,000/㎾ Wind PP : $ 1.000 /kw.

  • PDF

Miniature planar stack using the flexible Printed Circuit Board as current collectors (연성 기판을 전류 집전체로 사용한 평판형 연료전지 스택)

  • Kim, Sung-Han;Cha, Hye-Yeon;Miesse, Craig M.;Cha, Suk-Won;Jang, Jae-Hyuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.1-4
    • /
    • 2008
  • Fuel cells have the potential of providing several times higher energy storage densities than those possible using current state-of-the-art lithium-ion batteries, but current energy density of fuel cell system is not better than that of lithium-ion batteries. To achieve the high energy density, volume and weight of fuel cell system need to be reduced by miniaturizing system components such as stack, fuel tank, and balance-of-plant. In this paper, the thin flexible PCB (Printed circuit board) is used as a current collector to reduce the stack volume. Two end plates are made from light weight aluminum alloy plate. The plate surface is wholly oxidized through the anodizing treatment for electrical insulation. The opening rate of cathode plate hole is optimized through unit cell performance measurement of various opening rates. The performances are measured at room temperature and ambient pressure condition without any repulsive air supply. The active area of MEA is 10.08 $cm^2$ and active area per a unit cell is 1.68 $cm^2$. The peak power density is about 210 mW/$cm^2$ and the air-breathing planar stack of 2 Wis achieved as a small volume of 18 cc.

  • PDF

The Characteristics of Asymmetric Hybrid Supercapacitor Cells and Modules for Power Quality Stabilization (전력품질 안정화용 비대칭 하이브리드 슈퍼커패시터 셀 및 모듈 특성)

  • Lee, Byung-Gwan;Maeng, Ju-Cheul;Lee, Joung-Kyu;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.617-621
    • /
    • 2016
  • In addition to the energy storage facilities based on high power technologies, Electric double layer capacitors(EDLC) are today's candidate for power quality stabilization. However, its low energy density is often inhibiting factor for application of electric power industry. Hybrid supercapacitor is an promising energy storage device that positioned between conventional EDLC and Li-ion battery. This paper describes the preparation and characteristics of a hybrid supercapacitor and module for power quality stabilization. A cylindrical 3200F hybrid supercapacitor ($60{\times}74.5mm$) was assembled by using the $Li_4Ti_5O_{12}$ electrode as an anode and activated carbon as a cathode. It shows 2.5 times higher energy density than conventional EDLC with the same volume. In order to determine the characteristics of the hybrid supercapacitor Module for uninterruptible power supply (UPS), hybrid supercapacitor cells were connected in series with active balancing circuit. At even the high current density of 14A(10C), Module prepared by 18 cells showed the capacitance of 170F at 30~50V, suggesting the applicability for UPS.

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

Criterion for judging seismic failure of suspen-domes based on strain energy density

  • Zhang, Ming;Parke, Gerry;Tian, Shixuan;Huang, Yanxia;Zhou, Guangchun
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper the strain energy density (SED) model is used to analyze the seismic behavior of suspen-domes and a new criterion is established for judging the seismic failure based on a characteristic point in the SED model. Firstly, a nonlinear time-history response analysis was carried out using the finite-element package ANSYS for typical suspen-domes subjected to different ground motions. The seismic responses including nodal displacements, ratios of yielding members, strain energy density and structural maximum deformation energy were extracted corresponding to the increasing peak ground acceleration (A). Secondly, the SED sum ($I_d$) was calculated which revealed that the $I_d-A$ curve exhibited a relatively large change (called a characteristic point) at a certain value of A with a very small load increment after the structures entered the elastic-plastic state. Thirdly, a SED criterion is proposed to judge the seismic failure load based on the characteristic point. Subsequently, the case study verifies the characteristic point and the proposed SED criterion. Finally, this paper describes the unity and application of the SED criterion. The SED method may open a new way for structural appraisal and the SED criterion might give a unified criterion for predicting the failure loads of various structures subjected to dynamic loads.

Seasonal Variations and Characteristics of the Stratification Depth and Strength in the Seas Near the Korea Peninsular using the Relative Potential Energy Anomaly (한반도 근해의 상대적 위치에너지 편차 변화를 이용한 성층화의 특성과 계절별 변화에 대한 연구)

  • Cho, Chang-Bong;Kim, Young-Gyu;Chang, Kyung-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • In this paper, we have proposed a method for quantization of the stratification strength in the sea water and analysing the distributions of the maximum stratification depths calculated by the method at the seas near the Korean peninsular. For calculating the stratification strength, modified and applied the potential energy anomaly formular which was suggested by Simpson in 1977. The data had been collected by NFRDI from 1971 to 2008 were used to determine the maximum vertical density gradient depth and the relative potential energy anomaly at that depth. In the East Sea, the stratification depth has become deepened about 20m in February and April since 1971. In Yellow-South Sea, the maximum density gradient depth has been deepened about 10m only in December during the same period and the difference of the stratification depth between summer and winter has been enlarged. These trends of variation of stratification strength and depth near the Korean peninsular should be investigated more carefully and continuously. And the results of these studies could be adopted for the more efficient operation of underwater weapon and detection systems.

SMA(SHAPE MEMORY ALLOY) ACTUATOR USING FORCED CONVECTION (강제 대류를 이용한 형상기억합금 작동기)

  • Jun Hyoung Yoll;Kim Jung-Hoon;Park Eung Sik
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.48-53
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA actuator along with its capabilities and limitations. Convective heating and cooling using water actuate the SMA(Shape memory alloy) element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater(burner), control unit and a displacement amplification device. The experimental test of the SMA actuator system results in 150 MPa stress(force : 1560 N) with $3\%$ strain and 0.5 Hz. actuation frequency. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

Electronic structure and magnetism of catalytic material Pt3Ni surfaces: Density-functional study

  • Sharma, Bharat Kumar;Kwon, Oryong;Odkhuu, Dorj;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.172-172
    • /
    • 2012
  • A Pt-skin $Pt_3Ni$(111) surface was reported to show high catalytic activity. In this study, we investigated the magnetic properties and electronic structures of the various oriented surfaces of bulk-terminated and Pt-segregated $Pt_3Ni$ by using a first-principles calculation method. The magnetic moments of Pt and Ni are appreciably enhanced at the bulk-terminated surfaces compared to the corresponding bulk values, whereas the magnetic moment of Pt on the Pt-segregated $Pt_3Ni$(111) surface is just slightly enhanced because of the reduced number of Ni neighboring atoms. Spin-decomposed density of states shows that the dz2 orbital plays a dominant role in determining the magnetic moments of Pt atoms in the different orientations. The lowering of the d-band center energy (-2.22 eV to -2.46 eV to -2.51 eV to -2.65 eV) in the sequence of bulk-terminated (100), (110), (111), and Pt-segregated (111) may explain the observed dependence of catalytic activity on surface orientation. Our d-band center calculation suggests that an observed enhanced catalytic activity of a $Pt_3Ni$(111) surface originates from the Pt-segregation.

  • PDF

Numerical Study on Properties of Metals and Expansion of Metal Hydrides (금속의 특성 및 금속수소화물의 팽창에 관한 수치해석)

  • Jung, Y.G.;Park, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.257-265
    • /
    • 2004
  • Numerical analysis, as EAM(Embedded Atom Method), in the atomic level is necessary to analyze the relation between the hydrogen and hydrogen absorption metals. EAM established on density functional theory was developed as a new means for calculating various properties and phenomena of realistic metal systems. In this study, we had constructed the EAM program from constitutive formulae and parameters of the hydrogen, nickel and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing. In result, not only the ground state properties of metals but also lattice constants and the volume expansion ratio of metal hydrides show good agreement with Daw's data and experiment data.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.