• Title/Summary/Keyword: Energy cost reduction

Search Result 641, Processing Time 0.025 seconds

Low-power Lattice Wave Digital Filter Design Using CPL (CPL을 이용한 저전력 격자 웨이브 디지털 필터의 설계)

  • 김대연;이영중;정진균;정항근
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.39-50
    • /
    • 1998
  • Wide-band sharp-transition filters are widely used in applications such as wireless CODEC design or medical systems. Since these filters suffer from large sensitivity and roundoff noise, large word-length is required for the VLSI implementation, which increases the hardware size and the power consumption of the chip. In this paper, a low-power implementation technique for digital filters with wide-band sharp-transition characteristics is proposed using CPL (Complementary Pass-Transistor Logic), LWDF (Lattice Wave Digital Filter) and a modified DIFIR (Decomposed & Interpolated FIR) algorithm. To reduce the short-circuit current component in CPL circuits due to threshold voltage reduction through the pass transistor, three different approaches can be used: cross-coupled PMOS latch, PMOS body biasing and weak PMOS latch. Of the three, the cross-coupled PMOS latch approach is the most realistic solution when the noise margin as well as the energy-delay product is considered. To optimize CPL transistor size with insight, the empirical formulas for the delay and energy consumption in the basic structure of CPL circuits were derived from the simulation results. In addition, the filter coefficients are encoded using CSD (Canonic Signed Digit) format and optimized by a coefficient quantization program. The hardware cost is minimized further by a modified DIFIR algorithm. Simulation result shows that the proposed method can achieve about 38% reductions in power consumption compared with the conventional method.

  • PDF

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

An Analysis of Velocity Patterns and Improvement Effect after Application of Domestic Roundabout Design Guidelines (Focusing on Busan Metropolitan City) (국내 회전교차로 설계지침 적용에 따른 속도패턴과 개선효과 분석 - 부산광역시를 중심으로 -)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.305-316
    • /
    • 2013
  • To find out if modern roundabout is still effective under drivers behavior and driving conditions in Busan Metropolitan City, the effects before and after introduction of roundabout were analyzed. According to analysis on velocity profile at roundabout, velocity deviation decreased, and average vehicle speed was close to design speed. As a result, it has been confirmed that most roundabouts were properly built. In terms of traffic operation, average vehicle speed improved by 87.2% when a traffic intersection was replaced by a roundabout. therefore, it has been found out that the introduction of roundabout has a positive effect on increasing vehicle speed by reducing traffic congestion. In addition, annual benefits expected from the replacement from a traffic intersection to a roundabout were KRW 872 million as follows; KRW 410 million in traffic communication, KRW 39 million in transportation safety, KRW 255 million in energy saving, KRW 95 million in reduction of air pollution and KRW 73 million in reduction of traffic signal installation cost. In other words, if 10% (193 spots) of all traffic intersections (1,926 spots in total) in Busan City are replaced by roundabouts, the municipal authority would be able to save about KRW 168.3 billion. According to analysis on the benefits expected from the installation of roundabouts compared to the investment cost for traffic intersections, about KRW 679 million could be saved per roundabout. Considering 10% of all traffic intersections in the City of Busan, about KRW 131 billion could be saved annually. The traffic accidents in roundabout usually occur because drivers aren't aware of right-of-way rules. Once the right-of-way rules settle, the number of traffic accidents would significantly decrease. In addition, it is urgent to promote education and campaign for drivers, pedestrians and bikers on the roundabout.

Test Bed Studies with Highly Efficient Amine CO2 Solvent (KoSol-4) (고효율 습식 아민 CO2 흡수제(KoSol-4)를 적용한 Test bed 성능시험)

  • Lee, Ji Hyun;Kwak, No-Sang;Lee, In Young;Jang, Kyung Ryoung;Jang, Se Gyu;Lee, Kyung Ja;Han, Gwang Su;Oh, Dong-Hun;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.267-271
    • /
    • 2013
  • Test bed studies with highly efficient amine $CO_2$ solvent (KoSol-4) developed by KEPCO research institute were performed. For the first time in Korea, evaluation of post-combustion $CO_2$ capture technology to capture 2 ton $CO_2$/day from a slipstream of the flue gas from a coal-fired power station was performed. Also the analysis of solvent regeneration energy was conducted to suggest the reliable performance data of the KoSol-4 solvent. For this purpose, we have tested 5 campaigns changing the operating conditions of the solvent flow rate and the stripper pressure. The overall results of these campaigns showed that the $CO_2$ removal rate met the technical guideline ($CO_2$ removal rate: 90%) suggested by IEA-GHG and that the regeneration energy of the KoSol-4 showed about 3.0~3.2 GJ/$tCO_2$ which was, compared to that of the commercial solvent MEA (Monoethanolamine), about 25% reduction of regeneration energy. Based on these results, we could confirm the good performance of the KoSol-4 solvent and the $CO_2$ capture process developed by KEPCO research institute. And also it was expected that the cost of $CO_2$ avoided could be reduced drastically if the KoSol-4 is applied to the commercial scale $CO_2$ capture plant.

A Study on Eco-efficiency in power plants using DEA Analysis (DEA 모형을 이용한 발전회사 환경효율성에 대한 연구)

  • Han, Jung-Hee
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.119-133
    • /
    • 2013
  • This study aims to provide power generating plants with eco-efficiency information. To implement the purposes, of study, both DEA(Data, Envelopment Analysis) model and interview were incorporated in terms of methodologies. To analyze the managerial efficiency, total labor cost and number of employees were considered as input factors. CO2, NOx, and water also were considered as input factors to analyze eco-efficiency. Both annual total power product and annual total revenue were used as output factors. CRS(Constant Return to Scale) and VRS(Variable Return to) model were facilitated in this analysis. According to the findings, most of the power plants were evaluated as 'Efficient'' taking into consideration of average value, both 0.928 from CCR model and 0.969 from VRS model. 7 DMUs including DMU3 and DMU12 are efficient out of 35 DMUs relatively, other DMUs are inefficient. For results of inefficient output factors distribution, it was found that inefficiency for NOx was marked relatively higher than CO2. In order to improve the eco-efficiency in the power plants in the long term, the target amount of Co2 as well as NOx reduction needs to be properly proposed in consideration of particularity of power plants. In the long run, renewable energy, alternative fuels should be adapted to reduce the eco-inefficient.

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE PARAMETERS FOR TWO-WAY STOP-CONTROLLED INTERSECTIONS (무신호 교차로의 안전 -서비스 수준 측정에 관한 연구-)

  • 이수범
    • Proceedings of the KOR-KST Conference
    • /
    • 1996.02a
    • /
    • pp.59-86
    • /
    • 1996
  • Current methods for evaluating unsignalized intersections, and estimating level-of-service (LOS) is determined from efficiency-based criteria such as little or no delay to very long delays. At present, similar procedures to evaluate intersections using safety-based criteria do not exist. The improvement of sight distances at intersections is the most effective way of improving intersection safety. However, a set of procedures is necessary to account for the limitations in current methodology. Such an approach would build upon such methods, but also account for: deficiencies in the current deterministic solution for the determination of intersection sight distances; opportunity for an accident and severity of an accident; and cost-effectiveness of attaining various levels of sight distances. In this research, a model that estimates the degree of safety at two-way stop-controlled intersections is described. Only crossing maneuvers are considered in this study because accidents caused by the crossing maneuvers are the dominate type among intersection accidents. Monte Carlo methods are used to estimate the hazard at an intersection as a function of roadway features and traffic conditions. Driver`s minimum gap acceptance in the crossing vehicles and headway distribution on the major road are used in the crossing vehicles and headway distribution on the major road are used in the model to simulate the real intersectional maneuvers. Other random variables addressed in the model are: traffic speeds; preception-reaction times of both drivers in the crossing vehicles and drivers in oncoming vehicles on the major road; and vehicles on the major roads. The developed model produces the total number of conflicts per year per vehicle and total potential kinetic energy per year per vehicle dissipated during conflicts as measurements of safety at intersections. Based on the results from the developed simulation model, desirable sight distances for various speeds were determined as 350 feet, 450 feet and 550 feet for 40 mph, 50 mph and 60 mph prevailing speed on the major road, respectively. These values are seven to eight percent less than those values recommended by AASHTO. A safety based level-of-service (LOS) is also developed using the results of the simulation model. When the total number of conflicts per vehicle is less than 0.05 at an intersection, the LOS of the intersection is `A' and when the total number of conflicts per vehicle is larger than 0.25 at an intersection, the LOS is `F'. Similarly, when the total hazard per vehicle is less than 350, 000 1b-ft2/sec2, the LOS is `F'. Once evaluation of the current safety at the intersection is complete, a sensitivity analysis can be done by changing one or more input parameters. This will estimate the benefit in terms of time and budget of hazard reduction based upon improving geometric and traffic characteristics at the intersection. This method will also enable traffic engineers in local governments to generate a priority list of intersection improvement projects.

  • PDF

Improvement of Anti-Corrosion Characteristics for Light Metal in Surface Modification with Sulfuric Acid Solution Condition (경금속 표면개질 시 황산 수용액 조건에 따른 내식성 개선 효과)

  • Lee, Seung-Jun;Han, Min-Su;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • Surface modification is a technology to form a new surface layer and overcome the intrinsic properties of the base material by applying thermal energy or stress onto the surface of the material. The purpose of this technique is to achieve anti-corrosion, beautiful appearance, wear resistance, insulation and conductance for base materials. Surface modification techniques may include plating, chemical conversion treatment, painting, lining and surface hardening. Among which, a surface modification process using electrolytes has been investigated for a long time in connection with research on its industrial application. The technology is highly favoured by various fields because it provides not only high productivity and cost reduction opportunities, but also application availability for components with complex geometry. In this study, an electrochemical experiment was performed on the surface of 5083-O Al alloy to determine an optimal electrolyte temperature, which produces surface with excellent corrosion resistance under marine environment than the initial surface. The experiment result, the modified surface presented a significantly lower corrosion current density with increasing electrolyte temperature, except for $5^{\circ}C$ of electrolyte temperature at which premature pores was created.

Acoustic Emission Monitoring of Incipient Failure in Journal Bearing Part II : Intervention of Foreign Particles in Lubrication (음향방출을 이용한 저어널 베어링의 조기파손감지(II) - 윤활유 이물질 혼입의 영향 및 감시 -)

  • Yoon, Dong-Jin;Kwon, Oh-Yang;Jung, Min-Hwa;Kim, Kyung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.122-131
    • /
    • 1994
  • Journal bearings in the rotating machineries are vulnerable to the contamination or the insufficient supply of lubricating oil, which is likely to be the cause of unexpected shutdown or malfunction of these systems. Various destructive and nondestructive testing methods had been used for the reduction of maintenance cost and the operational safety problems due to the accidents related to bearing damages. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. Experimental schedules for the intervention of foreign particles was composed to be more quantitative and systematic than last study in consideration of minimum oil film thickness and particle size. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. Several parameters such as AE rms level, waveform, AE energy distribution and other AE event parameters are used for analysis and characterization of damage source. The results showed that the history of damage was well correlated with the changes of AE rms level and the type of damage source signal can be verified using other informations such as waveform, distributions of AE parameters etc.

  • PDF