• Title/Summary/Keyword: Energy controlled discharge

Search Result 71, Processing Time 0.022 seconds

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • Choi, Sang-Won;Ohsawa, Atsushi
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys (Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구)

  • Lee, Ji-Youl;Kim, Chan-Jung;Kim, Dai-Ryong
    • Journal of Hydrogen and New Energy
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

Discharge Characteristics of a KSTAR NBI Ion Source

  • Chang Doo-Hee;Oh Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.226-233
    • /
    • 2003
  • The discharge characteristics of a prototype ion source was investigated, which was developed and upgraded for the NBI (Neutral Beam Injection) heating system of KSTAR (Korea Superconducting Tokamak Advanced Research). The ion source was designed for the arc discharge of magnetic bucket chamber with multi-pole cusp fields. The ion source was discharged by the emission-limited mode with the control of filament heating voltage. The maximum ion density was 4 times larger than the previous discharge controlled by a space-charge-limited mode with fully heated filament. The plasma (ion) density and arc current were proportional to the filament voltage, but the discharge efficiency was inversely proportional to the operating pressure of hydrogen gas. The maximum ion density and arc current were obtained with constant arc voltage ($80{\sim}100V$), as $8{\times}10^{11}cm^{-3}$ and 1200 A, respectively. The estimated maximum beam current was about 35 A, extracted by the accelerating voltage of 80kV.

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • 최상원;대택돈
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.303-308
    • /
    • 2003
  • 가연성 물질의 최소점화에너지(Minimum Ignition Energy; MIE)를 아는 것은 화학공정 등의 안전성 평가에 중요한 것이다. 현재 MIE의 측정에는 주로 용량성 불꽃방전이 이용되고 있다. 용량이 큰 커패시터를 이용한 방전에서는 MIE가 크게 되는 경향이 있고, MIE가 회로정수에 의존한다는 것이 실험적으로 알려져 있다. 이 현상은 방전회로의 시정수와 점화를 위한 에너지의 수송시간과의 관계에 의해 이론적으로 설명하는 것이 가능하게 되었다.(중략)

  • PDF

Charge/Discharge characteristics of Li ion battery according to weight ratio of cathode to anode (리튬이온전지의 정.부극 중량비에 따른 전지의 충방전특성)

  • Eom, S.W.;Doh, C.H.;Hyung, Y.U.;Moon, S.I.;Yeom, D.H.;Yun, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1412-1413
    • /
    • 1996
  • Li ion battery have many advantages such as high energy density, high voltage and low self discharge, so it will replace conventional Ni/Cd battery. But, charge-discharge characterization of Li battery is controlled by weight ratio of electrodes (Cathode/Anode). So, we performed a study on relation between charge/discharge characterization and weight ratio (cathode/anode).

  • PDF

An experimental study of heat transfer with $Na_4P_2O_7{\cdot}10H_2O$ as P.C.M. ($Na_4P_2O_7{\cdot}10H_2O$의 축열방열시 열전달 특성에 관한 실험적 연구)

  • Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.70-77
    • /
    • 1989
  • Sodium pyrophosphate that melting point is $79-80^{\circ}C$ have been Studied on heat storage and heat discharge. In heat storage process, sodium pyrophosphate was kept up initial temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ which melt by heated water at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$. In heat discharge process, initial temperature of sodium pyrophosphate was maintained at temperature $85^{\circ}C,\;90^{\circ}C,\;95^{\circ}C$ which varied cooling temperature $50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$. The experiment has been reached conclusions as follows. 1) Heat transfer properties of phase change material is controlled by conduction during heating and cooling process. 2) The temperature increased rapidly at initial stage and transient region increase slowly because of characteristic of latent heat. 3) The lower cooling water temperature is the less the time that get to thermal equivalent state take during discharge process. 4) The higher cooling water temperature is the less temperature difference between top and bottom in P.C.M during discharge process.

  • PDF

A Study on Color Control in Gas Discharge Tube (기체 방전관의색상 제어에 관한 연구)

  • Lee, Jong-Chan;Aono, Masaharu;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.285-288
    • /
    • 1996
  • The electronic operation of the gas discharge tube is controlled by the electrical energy as sinusoidal waveform in arbitrary frequency range, or as a sequence of pulses at a wide range of duty cycle, the gas composition, the kind of electrode and the vessel geometry. In this paper, the pulsed mode operated gas discharge tube is composed with mixed gas of IIg-Ne ( 10 Torr ), in the tube of 15.0 mm outer diameter and has variable color from red to blue with changing frequency and pulse width in high voltage. As increasing pulse width and frequency in the gas discharge tube, the phenomenons that the electron temperature in the positive column increases and the radiation from atoms of higher upper state energy levels increases, exist. The color have the locus from red (0.4972, 0.3128) to blue (0.2736, 0.2619) in CIE chromacity diagram with increasing pulse width and frequency. The changing method of pulse width and frequency has been shown to be suitable for the luminous color control.

  • PDF

Correlation on Compressor Discharge Temperature of System A/C Applying PWM Scroll Compressor in Cooling Mode (PWM 스크롤압축기를 적용한 시스템 에어컨의 냉방운전 시 압축기 토출온도에 대한 상관식 개발)

  • Kwon, Young-Chul;Park, Sam-Jin;Ko, Kuk-Won;Park, Byung-Kwon;Kim, Dae-Hun;Youn, Baek
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.154-159
    • /
    • 2006
  • An experimental study has been performed to investigate the correlation on compressor discharge temperature of capacity modulated system A/C in cooling mode. Indoor and outdoor temperatures, the cooling capacity, compressor discharge temperature and loading time are measured by the psychrometric calorimeter. The system is controlled by applying the scroll compressor operated by PWM valve and loading duty. With decreasing outdoor temperature, the cooling capacity increases. But, with decreasing indoor temperature, it decreases. According to the increase in outdoor temperature and loading duty, compressor discharge temperature increases. From these experimental data, the correlation on compressor discharge temperature is proposed. The correlation obtained from the present study is agreed with the experimental data within $3^{\circ}C$.