• Title/Summary/Keyword: Energy consumption component

Search Result 114, Processing Time 0.025 seconds

A Study on the Energy Conservation Effect of Each Energy Consumption Component In Indoor Swimming Pools (실내수영장의 에너지 소비요소별 에너지 절약효과에 관한 연구)

  • 김영돈;권규동;여명석;김광우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1092-1101
    • /
    • 2002
  • The objective of this study is to develop energy saving strategies for indoor swimming pools and to estimate the effect of each energy saving strategy. For this purpose, field measurements regarding pool water heating energy, domestic hot water heating energy are conducted and a base energy consumption model is implemented using the DOE-2.1E program. The results of the study reveal that 25% of the total pool water heating energy may be saved by using night time pool covers, 27% of the total domestic hot water heating energy may be saved by using a waste water heat recovery system (effic. 60%), and of the total ventilation energy may be saved using an exhaust air heat recovery system (effic. 60%).

The Analysis of Energy Consumption Characteristics of the Apartment (공동주택 에너지 소비 경향 분석에 관한 연구)

  • Lee, Hyun-Jung;Park, Sun-Hyo;Bae, Sang-Hwan;Lee, Byung-Seok;Kim, Yang-Sub
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.305-310
    • /
    • 2012
  • In 2009, The Ministry of Land, Transport and Maritime Affairs, Korea opens apartment maintenance fee to public in "Apartment Management Info System". The high energy consumption component of apartment, which is hot water, water, electricity and heating, is released to public on this system. Through this system, apartment energy consumption and greenhouse gas emissions data can be compiled and expected to be accurately analyzed. Energy consumption and greenhouse gas emissions statistics of the apartment are collected being made to reduce energy and gas emissions. However, The accurate survey of energy consumption trends have not been accomplished. The energy consumption and greenhouse gas emissions survey in Apartment should be made first in order to reduce energy consumption. and then the correlation factors analysis which is affecting energy consumption is required. The purpose of this study is to analyze energy consumption characteristics of apartment in Bundann-gu, Seongnam, Korea in monthly, unit area and building built year basis. And then the research can be used as the basis of policy to Reduce energy consumption and greenhouse gas emissions.

  • PDF

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

Energy Characteristic Specification Method of Reusable Component for Energy Efficient Embedded Software Development (저전력 임베디드 소프트웨어 개발을 위한 재사용 컴포넌트의 전력소모 특성 명세 방법)

  • Kim, Doohw an;Lee, Jae-Wuk;Hong, Jang-Eui
    • Journal of Software Engineering Society
    • /
    • v.24 no.2
    • /
    • pp.55-66
    • /
    • 2011
  • Component-based Software development(CBSD) is widely used in various area due to its efficiency of time, cost and effort. In the embedded software which has high dependency of platform and can be developed by product family, the efficiency of CBSD is maximized by reuse. These embedded software has various limitations of the resources. Specially, the effective energy consumption is very important in the portable embedded software such as smart phone and tablet PC, because they are operated with limited energy source like a battery. Therefore, energy efficient problem became very important issue in the CBSD. In this paper, we identified characteristics and environment that influence energy consumption of components. Afterward, we defined a component specification language which is consisted to describe energy characteristics of the components. This supposed specification language can be utilized to energy efficient component search and selection.

  • PDF

A Study on Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Lee, Min-Su;Cho, Yong-Rae;Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

Study on the Analysis of Energy Consumption Corresponding Window Area Ratio (건물 외피 창호면적 변화에 따른 에너지 소비량에 관한 연구)

  • Ha, Dae-Woong;Park, Kyung-Soon;Son, Won-Tug
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.857-862
    • /
    • 2008
  • Window is the most demanding design component in the building design. Recently, window area in the building surface has been increased significantly in the office building. As window area increased significantly, however, the thermal load has been increased significantly due to lack of thermal performance of the outside wall. In this paper, we discussed the energy consumption of the buildings according to window area ratio. Two types of building for energy consumption analysis were made by Designbuilder v.1.4 and Energyplus v.2.0. Window area ratio was five different types ($30%{\sim}70%$) in each building. As a result, the cooling energy consumption has been decreased as window area decreased in each building. Whereas the heating energy consumption has been increased window area decreased.

  • PDF

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

Design Strategy of Low-Power Node by Analyzing the Hardware Modules in Surveillance and Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 하드웨어 모듈의 소모전력 분석을 통한 저전력 노드 설계 전략)

  • Kim, Yong-Hyun;Yeo, Myung-Ho;Chung, Kwangsue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.761-769
    • /
    • 2012
  • In this paper, we propose a low-power design strategy to minimize energy-consumption for surveillance and reconnaissance sensor networks. The sensor network consists of many different nodes with various operations such as target detection, packet relay, video monitoring, changing protocols, and etc. Each sensor node consists of sensing, computing, communication, and power components. These components are integrated on a single or multiple boards. Therefore, the power consumption of each component can be different on various operation types. First, we identified the list of components and measured power consumption for them from the first prototype nodes. Next, we focus on which components are the main sources of energy consumption. We propose many energy-efficient approaches to reduce energy consumption for each operation type.

Lifetime Maximization of Wireless Video Sensor Network Node by Dynamically Resizing Communication Buffer

  • Choi, Kang-Woo;Yi, Kang;Kyung, Chong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5149-5167
    • /
    • 2017
  • Reducing energy consumption in a wireless video sensor network (WVSN) is a crucial problem because of the high video data volume and severe energy constraints of battery-powered WVSN nodes. In this paper, we present an adaptive dynamic resizing approach for a SRAM communication buffer in a WVSN node in order to reduce the energy consumption and thereby, to maximize the lifetime of the WVSN nodes. To reduce the power consumption of the communication part, which is typically the most energy-consuming component in the WVSN nodes, the radio needs to remain turned off during the data buffer-filling period as well as idle period. As the radio ON/OFF transition incurs extra energy consumption, we need to reduce the ON/OFF transition frequency, which requires a large-sized buffer. However, a large-sized SRAM buffer results in more energy consumption because SRAM power consumption is proportional to the memory size. We can dynamically adjust any active buffer memory size by utilizing a power-gating technique to reflect the optimal control on the buffer size. This paper aims at finding the optimal buffer size, based on the trade-off between the respective energy consumption ratios of the communication buffer and the radio part, respectively. We derive a formula showing the relationship between control variables, including active buffer size and total energy consumption, to mathematically determine the optimal buffer size for any given conditions to minimize total energy consumption. Simulation results show that the overall energy reduction, using our approach, is up to 40.48% (26.96% on average) compared to the conventional wireless communication scheme. In addition, the lifetime of the WVSN node has been extended by 22.17% on average, compared to the existing approaches.