• Title/Summary/Keyword: Energy consumption comparison

Search Result 448, Processing Time 0.024 seconds

A Study on GRNN Control Strategies for Floor Radiant Heating System in Residential Apartments (공동주택 바닥복사 난방시스템의 GRNN 제어 적용에 관한 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.830-836
    • /
    • 2012
  • In this study, the effects of heating control methods on heating control performance and energy consumption in the floor radiant heating control system of residential apartments were research by computer simulation. A general regression neural network(GRNN) control method for reducing indoor temperature overshoot and saving energy in floor radiant heating system is suggested. The GRNN control method shows good responses in comparison with the conventional and outdoor reset control methods for improving indoor thermal environment and reducing energy consumption.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Channel Assignment based on Transmission Distance on Wireless Multi-Channel Sensor Networks (다중 채널 무선 센서 네트워크에서 전송 거리 기반 채널 할당)

  • Park, Si-Yong;Cho, Hyun-Sug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.183-190
    • /
    • 2014
  • In this paper, we propose a transmission scheme to reduce energy consumption on wireless multi-channel sensor networks. This proposed scheme differentiates the number of usable channels based on a priority. Sensor nodes consume the most energy to transmit data. Also, as transmission distance is far, they consume the more energy. Therefore retransmission due to transmission failure of sensor nodes that are long transmission distance is required more energy consumption. In this paper, we provide a stable transmission environment by allocating a high priority for data that is sent far away. The received data with a high priority is more allocated the number of usable channels. In the experiment results, the receiving failure probability and the restransmission energy consumption of proposed scheme is superior to ones of comparison scheme.

A Study on the Comparison Analysis of Minimum Airflow Control Logic of VAV Terminal Box (VAV 터미널 박스의 최소풍량 제어방식 비교 연구)

  • Cho, Young-Hum;Kang, Su-Hyun;Seong, Yoon-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.96-102
    • /
    • 2012
  • The minimum airflow of VAV terminal boxes is a key factor for comfort, indoor air quality(IAQ) and energy cost. If the minimum airflow is not reasonable, it would waste energy and make IAQ problems. There are two types of VAV terminal box control logic. One is the single maximum, another is the dual maximum control logic. Dual maximum control logic is more efficiency way to reduce the energy consumption. It has a minimum airflow set point and a heating maximum set point. It allows the minimum airflow set point to be much lower than single maximum control logic. A building simulation was conducted to evaluate the energy consumption and the IAQ according to the control logic of the V AV terminal box. In the simulation, dual maximum control logic can save the energy up to 6.5% compared to the single maximum control logic.

A Study on the Comparison for Energy Consumption Characteristics between G-SEED certified and non-certified Office Buildings in Korea (G-SEED 인증 건축물과 비인증 건축물의 에너지 소비량 특성에 관한 연구 : 업무시설을 대상으로)

  • Kim, Jong-Hyun;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.33-43
    • /
    • 2019
  • Considerable efforts have been made to reduce greenhouse gas emission around the world to cope with climate change. The government is implementing G-SEED certification to promote energy efficient building design. This study aims to verify the effectiveness of the G-SEED certification system by analyzing the actual energy use of certified and non-certified office buildings. For this purpose, the energy consumption of 135 certified and 142 non-certified office buildings was analyzed according to the seasonal characteristics, building size and number of floors, approval year, and certification grade. The energy saving effects of certified buildings was about 50% higher than that of non-certified buildings. The seasonal energy consumption of buildings is closely related to the heating degree-days. The energy consumption of certified and non-certified buildings decreases with increasing approval year. On the other hand, the energy consumption according to building size and certification grade is not related. This study provides meaningful basic data of G-SEED certification system for future improvement. As the building energy performance standards are strengthened over the years, it is necessary to make the individual score of G-SEED certified projects open to the public to configure the factors of energy efficiency.

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

An Experimental Study on the Drying Characteristics of Automotive Paint Using Heating Panels and Hot Air (가열패널과 열풍을 이용한 자동차용 도료의 건조특성에 관한 실험적 연구)

  • Kim, Sung-Il;Park, Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.828-836
    • /
    • 2010
  • The drying is a process that involves coupled and simultaneous heat and mass transfer. When a wet solid is subjected to thermal drying, two processes occur simultaneously. Drying is classified according to heat transfer characteristics in terms of conduction, convection and radiation. In thermal drying, radiation is easier to control than conduction and convection drying and involves a relatively simple structure. In this study, we measured energy consumption, surface hardness of paint and surface gloss with variation of surface temperature of drying materials and drying time. Drying characteristics and energy consumption between heating panels and hot air heating have been presented. The present study shows that a dryer using heating panels is more effective than a hot air dryer from the viewpoint of energy conservation. The hot air dryer, however, was not optimized and more studies on various parameters related to drying will need to be investigated for definite comparison of drying characteristics of the dryers. The result, even if limited, would present the effective availability of paint drying.

Thermal performance evaluation of Temperable Low-e glass window through Heating Energy consumption Analysis (난방에너지 사용량 분석을 통한 후강화 로이유리 창호의 단열성능 평가)

  • Jang, Cheol-Yong;Kim, Jeong-Gook;Ahn, Byung-Lip;Kim, Jun-Sup;Haan, Chan-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.200-205
    • /
    • 2012
  • In the high oil price age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating in large percent of whole building loads, and are regarding as the primary target of energy efficiency. In this study, in order to reduce heat loss of buildings, we investigate the thermal performance properties of Temperable Low-e glazing coated Ag membrane that has high electrical conductivity. The Temperable Low-e glazing windows has high insulation and shading properties, and it has strength that can supply various product which consumers want. In order to evaluate thermal performance of temperable windows, we install single low-e windows and double low-e windows in the experimental chamber and analysis the comparison heating energy consumption between single and double Low-e glazing windows. performance evaluation was conducted.

  • PDF

Study on the Spinning Processes Combined with Shear and Shrinking Deformation (전단 및 교축변형이 조합된 복합스피닝 공정에 관한 연구)

  • 이항수;강정식
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.507-519
    • /
    • 1999
  • An approach using the energy method has veen proposed for the analysis of cone spinning having the complicated deformation modes mixed by shear and normal deformation. In the proposed method, the corresponding solution is found through optimization of the total energy dissipation with respect to the parameters assumed by the velocity field defined as the variation of the length in longitudinal direction. The sheet blank is divided into three layers to consider the bending effect and the energy dissipated by shear deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation is superposed to the energy consumption due to normal deformation related with the shrinking deformation of axi-symmetric sheet element for the evaluation of total deformation energy. In order to check the validity of the proposed method, the complex spinning for making the conical cup is analyzed and the computed results are compared with the experimental results. In comparison of the computed results with existing experimental results,, the good agreement is obtained for the variation of outer radius and the distribution of thickness, and it has thus been shown that the present approach is applicable to the analysis of complex spinning.

  • PDF

Comparison of excess post-exercise oxygen consumption of different exercises in normal weight obesity women

  • Jung, Won-Sang;Hwang, Hyejung;Kim, Jisu;Park, Hun-Young;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.2
    • /
    • pp.22-27
    • /
    • 2019
  • [Purpose] The purpose of this study was to compare the excess post-exercise oxygen consumption (EPOC) between different types of exercises in women with normal weight obesity (NWO). [Methods] Nine university students with NWO having body mass index <25 kg/m2 and body fat percentage >30% participated in the study. First, continuous exercise (CEx) on an ergometer for 30 minutes at 60% of maximal oxygen consumption (VO2max) and interval exercise (IEx) at 80% VO2max for 2 minutes were performed. This was followed by exercise performed at 40% VO2max for 1 minute and at 80% VO2max for 3 minutes, performed 6 times repeatedly for a total of 26 minutes. The accumulation of short duration exercise (AEx) was performed for 3-bouts of 10 minutes each at 60% VO2max. [Results] The major findings were as follows: energy consumption during the exercises showed no significant difference between CEx, IEx, and AEx; EPOC was higher in IEx and AEx as compared to CEx for all dependent variables (e.g. total oxygen consumption, total calorie, summation of heart rate, and EPOC duration); and the lipid profile showed no significant difference. [Conclusions] Our study confirmed that when homogenizing the energy expenditure for various exercises in NWO individuals, EPOC was higher in IEx and AEx than in CEx. Therefore, IEx and AEx can be considered as effective exercise methods for increasing energy expenditure in NWO females.