• Title/Summary/Keyword: Energy aware routing

Search Result 113, Processing Time 0.024 seconds

Density Aware Energy Efficient Clustering Protocol for Normally Distributed Sensor Networks

  • Su, Xin;Choi, Dong-Min;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.911-923
    • /
    • 2010
  • In wireless sensor networks (WSNs), cluster based data routing protocols have the advantages of reducing energy consumption and link maintenance cost. Unfortunately, most of clustering protocols have been designed for uniformly distributed sensor networks. However, some urgent situations do not allow thousands of sensor nodes being deployed uniformly. For example, air vehicles or balloons may take the responsibility for deploying sensor nodes hence leading a normally distributed topology. In order to improve energy efficiency in such sensor networks, in this paper, we propose a new cluster formation algorithm named DAEEC (Density Aware Energy-Efficient Clustering). In this algorithm, we define two kinds of clusters: Low Density (LD) clusters and High Density (HD) clusters. They are determined by the number of nodes participated in one cluster. During the data routing period, the HD clusters help the neighbor LD clusters to forward the sensed data to the central base station. Thus, DAEEC can distribute the energy dissipation evenly among all sensor nodes by considering the deployment density to improve network lifetime and average energy savings. Moreover, because the HD clusters are densely deployed they can work in a manner of our former algorithm EEVAR (Energy Efficient Variable Area Routing Protocol) to save energy. According to the performance analysis result, DAEEC outperforms the conventional data routing schemes in terms of energy consumption and network lifetime.

Hierarchical Energy-Aware Routing Algorithm for Heterogeneous Wireless Sensor Networks (Heterogeneous 무선 센서 네트워크를 위한 계층적 에너지 인지 라우팅 알고리즘)

  • Park, Jin-Ho;Seo, Sang-Bo;Song, Seung-Mi;Kim, Sung-Un
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.13-14
    • /
    • 2007
  • We propose HERAH(Hierarchical Energy-Aware Routing Algorithm for Heterogeneous Wireless Sensor Networks) that is the hierarchical routing algorithm in WSNs and is established on heterogeneous environment. HERAH performs CH selection by considering residual energy level and uses multi-hop communication within cluster. So, HERAH makes improvements in the energy savings and the network lifetime compared with LEACH.

  • PDF

Urgency-Aware Adaptive Routing Protocol for Energy-Harvesting Wireless Sensor Networks

  • Kang, Min-Seung;Park, Hyung-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-33
    • /
    • 2021
  • Energy-harvesting wireless sensor networks(EH-WSNs) can collect energy from the environment and overcome the technical limitations of existing power. Since the transmission distance in a wireless sensor network is limited, the data are delivered to the destination node through multi-hop routing. In EH-WSNs, the routing protocol should consider the power situations of nodes, which is determined by the remaining power and energy-harvesting rate. In addition, in applications such as environmental monitoring, when there are urgent data, the routing protocol should be able to transmit it stably and quickly. This paper proposes an adaptive routing protocol that satisfies different requirements of normal and urgent data. To extend network lifetime, the proposed routing protocol reduces power imbalance for normal data and also minimizes transmission latency by controlling the transmission power for urgent data. Simulation results show that the proposed adaptive routing can improve network lifetime by mitigating the power imbalance and greatly reduce the transmission delay of urgent data.

An Inter-Session Opportunistic Network Coding-aware Multipath Routing Protocol (세션간 네트워크 코딩 기회를 인식하는 다중 경로 라우팅 프로토콜)

  • Choi, Tae-Jong;Kang, Kyung-Ran;Cho, Young-Jong;Bang, June-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.536-549
    • /
    • 2012
  • An ad hoc network consists of nodes with limited energy. Therefore, the data transmission can fail abruptly due to lack of energy of transmitting node. A previous work PAMP proposed to build multiple low-energy paths to support stable packet delivery exploiting the nodes with low energy. It has energy-reservation scheme and multi-path selection scheme for stationary wireless ad hoc networks. In this paper, we propose an extended version of PAMP by incorporating network coding opportunity in path selection process. The simulation results show that our proposed scheme shows better packet delivery ratio and lower energy consumption compared with PAMP and a legacy energy-aware multipath routing protocol REAR.

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

Improved Routing Algorithm for Enhancing Survivability in Wireless Sensor Networks (무선 센서 네트워크의 생존성 강화를 위한 개선된 라우팅 알고리즘)

  • Choi, Seung-Kwon;Lee, Byong-Rok;Jang, Yoon-Sik;Kim, Tae-Hoon;Ji, Hong-Il
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.9
    • /
    • pp.100-107
    • /
    • 2007
  • This paper proposes and efficient routing scheme named MP-DD(MultiPath-Direct Diffusion) which are simple enough to be applicable to the wireless sensor networks. Conventional DD(Direct Diffusion) uses only one optimal path, therefore it consumes more energy of specific nodes. MP-DD uses multiple path and has a information of hop upstream node in the direction of the base-station. Simulation results show that the proposed scheme can increase network survivability compared to conventional DD and EAR(Energy Aware Routing) schemes.

An Energy-aware Dynamic Source Routing Algorithm for Mobile Ad-hoc Networks (이동 애드혹 네트워크에서 에너지를 고려한 동적 소스 라우팅 알고리즘)

  • Lee, Cheong-Yeop;Shin, Yong-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.165-173
    • /
    • 2011
  • In Mobile Ad-hoc Network(MANET), mobile nodes are operated by limited batteries. Therefore, it is very important to consume the battery power efficiently to prevent termination of the network. In this paper, we propose Energy-aware Dynamic Source Routing(EDSR) which is based on the Dynamic Source Routing(DSR) to increase the packet transmission and lifetime of the network. If the battery power of a node reaches threshold level, then the node gives up the function of relaying to save battery power except as a source and a destination node. While the conventional DSR doesn't consider the battery consumptions of the nodes, EDSR blocks the nodes from relaying whose battery powers are below the threshold level. Simulation results show the proposed EDSR is more efficient in packet transmission and network lifetime through the balanced battery consumption of the mobile nodes.

A OSPF Routing Scheme based on Energy Profiles and Its Characteristics for QoS-Aware Energy Saving(QAES) in IP Core Networks (IP 네트워크에서 QoS-Aware Energy Saving(QAES)을 위한 Energy Profile 기반 OSPF 라우팅 방식 및 특성)

  • Seo, Yusik;Han, Chimoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.9-21
    • /
    • 2016
  • Nowadays various methods for energy saving have been studied in IP networks. This paper suggests a 2-phase OSPF routing method for energy saving on IP networks having various energy profiles and analyzes its characteristics. The phase-1 of the routing is an OSPF routing method considering the energy cost of devices besides existing metrics to minimize energy consumption. In the phase-2 of the routing, it makes core nodes go into sleep sate for energy saving and reroutes the paths affected by sleeping core nodes. At this time, we confirm that the characteristics of mean delay and energy efficiency can be satisfied by limiting an allowable hop number in the reroute paths, and utilization rate of nodes and links for assuring energy saving and network-level QoS. Since the efficiency of energy saving and delay characteristics differ according to selection methods of core nodes to go into sleep state, it is that the a method of core node selection based on MP(minimum_path) is more excellent than others in terms of network-level QoS and energy saving in IP networks.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.