• Title/Summary/Keyword: Energy absorption characteristics

Search Result 589, Processing Time 0.022 seconds

Impact Characteristics on the Laminated Shell for CF/Epoxy Composite (CF/Epoxy 복합재 적층쉘의 충격특성)

  • 양현수;정풍기;김영남;이종선
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.311-323
    • /
    • 2004
  • This paper is to study the energy absorption characteristics of CF/Epoxy(Carbon Fiber/Epoxy Resin) laminated shell with the various curvatures subjected to transverse impact loadings under the low impact velocity in consideration of design of structural members for use of transportation machine, which are consisted of the characteristics of high stiffness, strength and lightweight. The curvature radius are associated with the energy absorption characteristics of CF/Epoxy laminated shell which is brittleness material. In all tests, maximum load of CF/Epoxy laminated plate is higher than that of laminated shell with curvature, but maximum deflection is lower. And then absorbed energy of laminated shell with curvature is higher than laminated plate(curvature radius is unlimited), As curvature radius is increased, the absorbed energy is increased in laminated shell with curvature.

Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load

  • Baaskaran, N.;Ponappa, K.;Shankar, S.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.179-194
    • /
    • 2018
  • Reliable and accurate method of computationally aided design processes of advanced thin walled structures in automotive industries are much essential for the efficient usage of smart materials, that possess higher energy absorption in dynamic compression loading. In this paper, most versatile components i.e., thin walled crash tubes with different geometrical profiles are introduced in view of mitigating the impact of varying cross section in crash behavior and energy absorption characteristics. Apart from the geometrical parameters such as length, diameter and thickness, the non-dimensionalized parameters of average forces which control the plastic bending moment for varying thickness has explored in view of quantifying its impact on the crashworthiness of the structure. The explicit finite element code ABAQUS is utilized to conduct the numerical studies to examine the effect of parametric modifications in crash behavior and energy absorption. Also the simulation results are experimentally validated. It is evident that the circular cross-sectional tubes are preferable as high collision impact shock absorbers due to their ability in withstanding axial and oblique impact loads effectively. Furthermore, the specific energy absorption (SEA), crash force efficiency (CFE), plastic bending moment, peak force responses and its impact for optimally tailoring a design to cater the crashworthiness requirements are investigated. The primary outcome of the study is to provide sufficient information on circular tubes for the use of energy absorbers where impact oblique loading is expected.

Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment (고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성)

  • Yang, Yong-Jun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF

Dependence Evaluation of the Self-Absorption Correction Factor for p-type High Purity Germanium Detector Characteristics (p-type HPGe 검출기 특성에 따른 밀도 보정인자 의존도 평가)

  • Jang, Mee;Ji, Young-Yong;Kim, Chang-Jong;Lee, Wanno;Kang, Mun Ja
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The precise determination of the activity for each radionuclide in environmental samples requires the self-absorption correction factor. In this research, we derived the self-absorption correction factor for three p-type high purity germanium detectors using the Monte Carlo code MCNPX. These detectors have different characteristics such as crystal diameter, height and size of the core. We compared the calculated full-energy peak efficiency with the experimental value using a standard sample with $1g/m^3$ density and verified the modeling. We simulated the dependency of the full-energy peak efficiency on the 0.3, 0.6, 0.9, 1.0, 1.2 and $1.5g/m^3$ samples and obtained the corresponding self-absorption correction factor. The self-absorption correction factors calculated for the three detectors differ by less than 1% over most of the energy range and sample densities considered. This indicates that the self-absorption correction factors are independent of the crystal characteristics of HPGe detector.

Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section (경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성)

  • Lee, Kil-Sung;Seo, Hyeon-Kyeong;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

The Improvement of the Performance of Solar Cooling and Heating Systems (II) - The Characteristics of an Absorption Refrigeration Powered by Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(II) - 태양열을 이용한 흡수식 냉동기의 성능 -)

  • Park, M.S.;Kim, M.G.;Kim, H.K.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1989
  • The purpose of this study is to obtain the dynamic characteristics of an absorption refrigerator powered by solar energy by experiments. Since the absorption refrigerator power by solar energy should have the characteristics which is suitable for the intermittence and rarity of solar energy, not only the characteristics of the steady state operations but also the partial load and the transient operations should be considered. The minimum available temperature of the storage tank should be known, and the absorption refrigerator can be suitably selected for air-conditioning systems. In this study, the experimental data of the transient state for on-off and warming-up operations has been obtained. Also the experiments are performed which test the minimum available temperature of the storage tank. The results show that it takes 1 hour to get to the steady state of the absorption refrigerator, and the minimum available temperature of the storage tank is about $68^{\circ}C$, and show that in the partial load operations the performance of the absorption refrigerator is improved by applying the modified control method to on-off operations.

  • PDF

The Energy Absorption Characteristics of Thin-walled Rectangular Tubes (박판 사각튜브의 에너지 흡수 특성)

  • 김천욱;한병기;원종진;임채홍
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.83-91
    • /
    • 1996
  • This paper investigates the energy absorption characteristics of thin-walled rectangular tubes. In the compact mode, the crushing process of a thin-walled tube is analyzed into 3 parts by the ratio of outward to inward fold length. The mean crush load and the half-wave folding length are determined by using minimum energy principle. The effective crush distance can be determined when half-wave folding length is known, and the number of folds is derived when crush distance is given. Thus when the crush distance is given, energy absorption capacity can be estimated with mean crush load and number of folds. And the theoretical value is proven experimentally.

  • PDF

The characteristics of bending collapse of aluminum/GFRP hybrid tube (알루미늄/GFRP 혼성튜브의 굽힘붕괴 특성)

  • 송민철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.84-87
    • /
    • 2000
  • Square tubes used for vehicle structure components have an important role on keeping its stiffness and preserving occupant safety in vehicle collision and rollover in which it experience axial collapse, bending collapse or both. Bending collapse, which absorbs kinetic energy of the impact and retains a survival space for the occupant, is a dominant failure mode in oblique collision and rollover. Thus, in this paper, the bending collapse characteristics such as the maximum bending moment and energy absorption capacity of the square tube replaced by light-weight material were evaluated and presented. The bending test of cantilever tubes which were fabricated with aluminum, GFRP and aluminum/ GFRP hybrid by co-curing process was performed. Then the maximum bending moment and the energy absorption capacity from the moment-angle curve were evaluated. Based on the test results, it was found that aluminum/ GFRP hybrid tube can show better specific energy absorption capacity compared to the pure aluminum or GFRP tube and can convert unstable collapse mode which may occur in pure GFRP tube to stable collapse mode like a aluminum tube in which plastic hinge is developed.

  • PDF

Energy Absorption Efficiency of Structural Steel System (강구조 시스템의 에너지 흡수효율)

  • 김장훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.294-301
    • /
    • 2003
  • The energy concept has been applied to the reported experimental results of six different structural steel connections to investigate the characteristics of system-dependent energy curve and energy absorption efficiency. For this the concept o( static and kinematic energy absorption efficiency has been defined. The present paper closes with the implication of the necessity of further investigation to extend the energy concept to reach the engineering practice.

  • PDF

The Study on the Axial Collapse Characteristics of Composite Thin-Walled Members for Vehicles (차체구조용 복합재 박육부재의 축압괴 특성에 관한 연구)

  • 김영남;차천석;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.195-200
    • /
    • 2001
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design for improved material properties. Composite tribes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibres, in the matrix and in the fibre-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of CFRP(Carbon Fiber Reinforced Plastics) tubes on static and impact tests. Static compression tests have been carried out using the static testing machine and impact tests have been carried out using the vertical crushing testing machine. Interlaminar number affect the energy absorption capability of CFRP tubes. Also, theoretical and experimental have the same value.

  • PDF