• Title/Summary/Keyword: Energy absorbing

Search Result 459, Processing Time 0.032 seconds

Estimation of Light Absorption by Brown Carbon Particles using Multi-wavelength Dual-spot Aethalometer (다파장 Dual-spot Aethalometer를 이용한 갈색탄소의 광흡수계수 평가)

  • Yu, Geun-Hye;Yu, Jae-Myeong;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.207-222
    • /
    • 2018
  • In this study, light absorption of carbonaceous species in $PM_{2.5}$ was investigated using a dual-spot 7-wavelength Aethalometer(model AE33) with 1-min time interval between January 01 and September 30, 2017 at an urban site of Gwangju. During the study period, two Asian dust (AD) events occurred in April (AD I) and May (AD II), respectively, during which light absorption in total suspended particles was observed. Black carbon (BC) was the dominant light absorbing aerosol component at all wavelengths over the study period. Light absorption coefficients by aerosol particles were found to have 2.7~3.3 times higher at 370 nm than at 880 nm. This would be attributed to light absorbing organic aerosols, which is called brown carbon (BrC), as well as BC as absorbing agents of aerosol particles. Monthly average absorption ${{\AA}}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950nm}$) calculated over wavelength range of 370~950 nm ranged from 1.10 to 1.35, which was lower than the $AAE_{370-520nm}$ values ranging from 1.19~1.68 that was enhanced due to the presence of BrC. The estimated $AAE_{370-660nm}$ of BrC ranged from 2.2 to 7.5 with an average of 4.22, which was fairly consistent to the values reported by previous studies. The BrC absorption at 370 nm contributed 10.4~28.4% to the total aerosol absorption, with higher contribution in winter and spring and lower in summer. Average $PM_{10}$ and $PM_{2.5}$ concentrations were $108{\pm}36$ and $24{\pm}14{\mu}g/m^3$ during AD I, respectively, and $164{\pm}66$ and $43{\pm}26{\mu}g/m^3$ during AD II, respectively, implying the greater contribution of local pollution and/or regional pollution to $PM_{2.5}$ during the AD II. BC concentration and aerosol light absorption at 370 nm were relatively high in AD II, compared to those in AD I. Strong spectral dependence of aerosol light absorption was clearly found during the two AD events. $AAE_{370-660nm}$ of both light absorbing organic aerosols and dust particles during the AD I and II was $4.8{\pm}0.5$ and $6.2{\pm}0.7$, respectively. Higher AAE value during the AD II could be attributed to mixed enhanced urban pollution and dust aerosols. Absorption contribution by the light absorbing organic and dust aerosols estimated at 370 nm to the total light absorption was approximately 19% before and after the AD events, but it increased to 32.9~35.0% during the AD events. In conclusion, results from this study support enhancement of the aerosol light absorption due to Asian dust particles observed at the site.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

A Study on the CO2 Removal Efficiency with Aqueous MEA and Blended Solutions in a Vortex Tube Type Absorber (Vortex Tube 형 흡수장치에서 MEA와 혼합흡수용액을 이용한 CO2 제거 효율 고찰)

  • Ryu, Woo-Jung;Han, Keun-Hee;Choi, Won-Kil;Lee, Jong-Sub;Park, So-Jin
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.795-800
    • /
    • 2009
  • In this study, the $CO_2$ removal characteristics of the Vortex tube type absorbtion apparatus were investigated to enhance the compactness of $CO_2$ absorption process and to reduce the amount of absorbing solution of the $CO_2$ separation process. The Vortex tube with the diameter of 17 mm and the length of 250mm was introduced in the experimental apparatus to treat $20Nm^3/hr$ of $CO_2$ containing flue gas. The flue gases for experiments containing 11~13 vol% of $CO_2$ were supplied from the coal-firing CFBC power plant with 12 ton/hr of steam producing capacity. The mixed solutions of 20 wt% of MEA as base solution with the adding solutions like HMDA, AMP and KOH were used as absorbents. The experiments were executed under the various conditions like the absorbing solution concentrations in the range of 20 to 50 wt%, the flow rate of $CO_2$ containing flue gases in the range of 6 to $15Nm^3/hr$ and the flow rate of absorbing solution in the range of 1.0 to 3.0 l/min. As a results, the $CO_2$ removal efficiency of mixed absorbent of 20 wt% of MEA with HMDA was remarkable. From this study, we concluded that the efficient separation of $CO_2$ from flue gases using the features of the Vortex tube type absorbing unit for gas/liquid contact and the separation of gas/liquid be possible. But more works are needed to increase the $CO_2$ removal efficiency of Vortex tube process.

Application of Convolutional Perfectly Matched Layer Method to Numerical Elastic Modeling Using Rotated Staggered Grid (회전된 엇갈린 격자를 이용한 탄성파 모델링에의 CPML 경계조건 적용)

  • Cho, Chang-Soo;Lee, Hee-Il
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.183-191
    • /
    • 2009
  • Finite difference method using not general SSG (standard staggered grid) but RSG (rotated staggered grid) was applied to simulation of elastic wave propagation. Special free surface boundary condition such as imaging method is needed in finite difference method using SSG in elastic wave propagation. But free surface boundary condition in finite difference method using RSG is easily solved with adding air layer or vacuum layer. Recently PML (Perfectly Matched layer) is widely used to eliminate artificial reflection waves from finite boundary because of its' greate efficiency. Absorbing ability of CPML (convolutional Perfectly Matched Layer) that is more efficient than that of PML and CPML that don't use splitting of wave equation that should be adapted to PML was applied to FDM using RSG in this study. Frequency absorbing characteristic and energy absorbing ability in CPML layer were investigated and CPML eliminated artificial boundary waves very effectively in FDM using RSG in being compared with that of Cerjan's absorbing method. CPML method also diminished amplitude of waves in boundary layer of solid-liquid model very well.

Analysis of Propagation of Deflagration and Fire Cause in the Busan lndoor Shooting Range (부산 실내사격장 화재의 연소 확대 및 발화원인 분석)

  • Song, Jae-Yong;Sa, Seung-Hun;Nam, Jung-Woo;Kim, Jin-Pyo;Kim, Dong-Hwan
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • This paper studied analysis of deflagration rapid propagation of burning through only a few second and fire cause into the Busan indoor shooting range. We carried out combustion experiment of sound-absorbing materials extensively used, to analyze propagation path of burning in indoor shooting range. From the experimental results, general sound-absorbing materials were rapid burned simultaneously with ignition and in case of attached gunpowder residue, they were burning about tripled by comparison with general sound-absorbing materials. The incombustibility sound-absorbing materials had all gone out simultaneously with ignition, but they were burning similar to general type materials in case of attached gunpowder residues. In order to analysis of the cause of fire, we calculated kinetic energy of bounced off bullet, from result, if the bounced off bullet impacted gunpowder residues, the gunpowder residues were possible to ignite by the bullet.

A study on Tensile performance of Energy Absorbing Bolts in Space Frame (스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구)

  • Lee, Sung-Min;Kim, Min-Sook;Choi, Jung-Sam;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

The Fabrication of Mg9Ti1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties (Part I : Preparations and Characterizations of Alloys) (수소 가압형 기계적 합금화법을 이용한 Mg9Ti1-(10, 20 wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 1보 : 합금제조와 특성평가))

  • Hong, Tae-Whan;Kim, Gyung-Bum;Kim, Young-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The main emphasis of this study was to find an new hydrogen absorbing alloy such as Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. ($Mg_9Ti_x$)-10, 20wt%Ni-Hx systems were prepared by hydrogen induced mechanical alloying(HIMA) using Mg and Ni chips and sponge Ti. The particles synthesized were characterized by X-ray diffraction, and their morphologies were observed by means of scanning electron microscopy(SEM) with energy dispersive spectrometry (EDS). In addition, the crystal structures were analyzed in terms of their bright-/ dark field images and the selected area diffraction pattern(SADP) of transmission electron microscopy(TEM).

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

Shear Behavior of Steel Eccentric Link Subject to Seismic Loads (철골 보 접합부재의 지진전단거동에 관한 연구)

  • 손기상
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.35-39
    • /
    • 1991
  • Concentrically braced frames are limited in their ability to absorb energy during an earthquake However by placing the bracing members eccentric to the beam column joints, an energy absorbing link unit is produced. The energy is absorbed by the link and / or columns deforming inelastically. Three models of a multistorey structure were analyzed using DRAIN-2D computer program .Three link lengths were used in the analyses, 7, 11 and 15 inches. The yield patterns are produced. However it is interesting to note the relative valuses of force and moment obtained.

  • PDF