• Title/Summary/Keyword: Energy absorbing

Search Result 458, Processing Time 0.02 seconds

Investigation of the Strain Rate Effects of EPS Foam (EPS Foam의 변형률속도효과에 대한 연구)

  • Kang, Woo-Jong;Cheon, Seoung-Sik;Lee, In-Hyeok;Choi, Seon-Ung;Min, Je-Hong;Lee, Sang-Hyeok;Bae, Bong-Kook
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.64-68
    • /
    • 2010
  • Expanded polystyrene(EPS) foams are often used in packaging to protect electrical appliances from impact loads. The energy absorbing performances of the EPS foams depend on several parameters such as density, microstructure and strain rate. Thus, the effects of the parameters on the strength of the EPS foams need to be investigated for an optimized packaging design by FEM. In this study, various EPS foams which have different densities were quasi-statically and dynamically loaded in order to obtain the stress-strain curves. EPS foams of various densities from 18.5 to 37.0kg/m3 were considered in the experiments. A drop-mass type apparatus was developed for the intermediate strain rate tests up to several hundreds/second. It was found from the experimental results that the strength of the EPS foams increase about 170% as the strain rate increases from 0.06/s to 60/s. Experimental results also showed that the strain rate sensitivity increases as the strain increases.

Hydrophobic and Hydrophilic PDMS Sponges Prepared Through Physicochemical Treatments (물리화학적 처리에 따른 PDMS 특성 조절)

  • Nam, Kyungmok;Park, Sungmin;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.737-742
    • /
    • 2016
  • An elastomer (especially PDMS) sponge is considered to be a promising selective absorber in cleaning up oil spills. The performance of a PDMS sponge in capturing and separating oil from (sea) water depends on several parameters such as surface roughness, physicochemical treatments, and hydrostatic stability. Here, we first present a method of fabricating the PDMS sponges having numerous micro-sized pores that act as absorption and storage spaces for the target material, and then we report an experimental effort undertaken to control the surface physicochemistry (i.e., hydrophobicity or hydrophilicity) of the PDMS sponges by adjusting the size of the pores and the concentration of the surfactant (i.e., silwet L-77). From the experimental results, we develop an in-depth understanding of the mechanism for controlling the surface physicochemistry of PDMS using water-soluble micro-sized particles and a surfactant. The surface energy and absorbing behavior of the PDMS sponges are also extensively discussed.

Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material (PCM 함유된 축열석고보드의 열환경특성)

  • Kwon, Oh-Hoon;Yun, Huy-Kwan;Han, Seong-Kuk;Ahn, Dae-Hyun;Shim, Myeong-Jin;Cho, Sung-Woon;Park, Jong-Soon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.570-574
    • /
    • 2010
  • The main function of conventional insulation materials is only to block the heat transfer and reduce heat loss from the building. On the other hand, thermal storage materials can work as an energy saver by absorbing or emitting heat within a specific temperature range. Thermal storage materials for building can maintain a constant temperature by effectively regulating the cycle of indoor temperature. As a result, we can enhance the performance of a cooling and heating system efficiently. In this study, phase change materials (PCMs) were added as thermal storage materials into gypsum boards which are extensively used for building material and we found out the thermal environmental characteristics. In addition, we checked out some problems when applying the thermal storage materials to buildings. Finally, This study set out to examine the degree of environmental-friendly characteristics of thermal storage building materials by analyzing the amount of TVOC and HCHO contents with the possibility of pollutants emission.

Phototoxicity: Its Mechanism and Animal Alternative Test Methods

  • Kim, Kyuri;Park, Hyeonji;Lim, Kyung-Min
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential.

Study on Damping Coefficient of Shock Absorber with Magnetic Effects (자기효과를 이용한 충격흡수장치의 감쇠계수에 관한 연구)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Hwang, Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.9
    • /
    • pp.832-838
    • /
    • 2011
  • The shock absorber with magnetic effect is suggested for a lunar lander. The shock absorber consists of a metal tube, a piston rod, and several permanent magnets moved by a piston rod in the tube, and the shock energy can be dispersed and dissipated by magnetic effects such as the magnetic force existed between a metal and magnets and the eddy current effect generated by a relative motion with a conductor and magnets. Besides, the shock-absorbing effect similar to that of a coil spring can be obtained by arranging the magnets in line, which are facing the same polar each other. The device has a very simple structure and is usable in space due to the unnecessariness of any oil or gas. The shock absorber was designed and manufactured for experiments and its spring and damping characteristics were studied by the theoretical, analytical and experimental methods.

Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films (Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구)

  • Hong, Soonhyun;Lee, Hyunju;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

Radiation-induced transformation of Hafnium composition

  • Ulybkin, Alexander;Rybka, Alexander;Kovtun, Konstantin;Kutny, Vladimir;Voyevodin, Victor;Pudov, Alexey;Azhazha, Roman
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1964-1969
    • /
    • 2019
  • The safety and efficiency of nuclear reactors largely depend on the monitoring and control of nuclear radiation. Due to the unique nuclear-physical characteristics, Hf is one of the most promising materials for the manufacturing of the control rods and the emitters of neutron detectors. It is proposed to use the Compton neutron detector with the emitter made of Hf in the In-core Instrumentation System (ICIS) for monitoring the neutron field. The main advantages of such a detector in comparison the conventional β-emission sensors are the possibility of reaching of a higher cumulative radiation dose and the absence of signal delays. The response time of the detection is extremely important when a nuclear reactor is operating near its critical operational parameters. Taking Hf as an example, the general principles for calculating the chains of materials transformation under neutron irradiation are reported. The influence of 179m1Hf on the Hf composition changing dynamics and the process of transmutants' (Ta, W) generation were determined. The effect of these processes on the absorbing properties of Hf, which inevitably predetermine the lifetime of the detector and its ability to generate a signal, is estimated.

Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate (Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구)

  • Park, Tae-Jung;Shin, Dong-Hyeop;Ahn, Byung-Tae;Yun, Jae-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.452-456
    • /
    • 2009
  • In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.

Performance Evaluation of the Drift Control in Residential Tall Building Using the Dampers (제진장치를 적용한 초고층 주거형 건축물의 횡변위 제어 성능 평가)

  • Park, Ji-Hyeong;Kim, Tae-Ho;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.265-273
    • /
    • 2008
  • The problem controlling lateral drift by the wind and the earthquake is very important in high rise buildings. But, outrigger system, generally used for residential tall buildings in Korea, has weak points with the occupancy of special space, the difficult construction and the long duration of works. On the other hand, the damper reduces story drifts of building structure by absorbing vibration energy induced by the dynamic loads and the application of damper systems is relatively simple. Also, the lateral drift control system such as outrigger system may raise the wind vibration problem of serviceability like human comfort and this problem may need another vibration control devices. Accordingly, we analyze the effect of the drift control using various dampers to substitute for outrigger system as the efficient system in residential tall buildings.

Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method (경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.