• Title/Summary/Keyword: Energy absorber

Search Result 406, Processing Time 0.031 seconds

Physical Studies of Burnable Absorbers in Hexagonal Fuel Assembly

  • Kim, Taek-Kyum;Kim, Young-Jin;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.15-20
    • /
    • 1996
  • We present the result of physical studies for three integral-type burnable absorbers of gadolinia, erbia and IFBA, in the hexagonal fuel assembly. The analysis of nuclear characteristics for gadolinia and IFBA cases shows that the spectrum hardening of hexagonal fuel assembly compared to rectangular one leads to smaller reactivity hold-down worth(RHW) and less change of MTC in the negative direction per insertion of one burnable absorber rod. Erbia case, on the other hand, exhibits reversed trend in RHW and MTC due to the enhanced absorption of large resonance of Erbium at 0.5 eV It turns out to be that Erbia performs best in terms of minimizing the peak pin power and maintaining as more negative MTC as practically attainable during the entire operational phase, and IFBA provides the least residual reactivity penalty at EOC. Therefore, we take Erbium as the suitable burnable absorber and provide optimal designs of 60, 120, 180, 240 and 300 erbia-shimmed hexagonal fuel assemblies with regard to minimizing the peak pin power.

  • PDF

Characterising the dynamic seals used in absorber rod drive mechanisms in Indian FBR

  • Kaushal, Nihal;Patri, Sudheer;Kumar, R. Suresh;Meikandamurthy, C.;Sreedhar, B.K.;Murugan, S.;Raghupathy, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3438-3448
    • /
    • 2021
  • Dynamic seals are one of the critical components of Absorber Rod Drive Mechanism of Fast Breeder Reactors, requiring separate experimental development. Their significance can't be overemphasized considering that the availability and re-usability of Control Rod Drive Mechanisms of Fast Breeder Test Reactor is governed by the failure rate of dynamic seals (bellows). For prototype and subsequent Fast Breeder Reactors in India, choice of the dynamic seal is changed to an in-house designed & developed labyrinth type V-ring seal. The present work is related to the numerical investigations carried out to gain insights into the sealing mechanism and the thermal behaviour of these seals. The results indicate that the seal geometry is very important for obtaining optimum performance. By changing the geometry of the present seal, performance enhancement by more than 50% in important indices is obtained. Further, the results point out that caution shall be exercised when the seal material & its operating temperature are changed. Also, the numerical model developed in this study will be useful for developing more robust dynamic seals in future.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

Development of Multistage Concentrating Solar Collector - I. Thermal performance of multistage cylindrical parabolique concentrating solar collector (다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器) 개발(開發)에 관(關)한 연구(硏究) - I. 다단이차원(多段二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 열적(熱的) 성능분석(性能分析))

  • Song, Hyun-Kap
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.3-14
    • /
    • 1986
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolique concentrating solar collector (M.C.P.C.S.C) was designed, which has several rows of parabolique reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The thermal performance of the M.C.P.C.S.C. newly designed in this study was analysed theoretically and experimentally. The results are summarized as follows: 1) prediction equation for outlet temperature, $T_o$, of heat transfer fluid and for the thermal efficiency, ${\eta}$, of the collector were derived as; o $$T_o=[C+B1_n(\frac{I_c(t)}{pv^3})]T_i$$ o $${\eta}=\frac{A}{A_c}\dot{m}[(C-1)+B1_n(E{\cdot}di^6\frac{I_c(t)}{\dot{m}^3})]\frac{T_i}{I_c(t)}$$ 2) When the insolation on the tilted solar collector surface, $I_c$, was $900-950W/m^2$ and the heat transfer fluid was not circulated in tubular absorber, the maximum temperature on the absorber surface was $100-118^{\circ}C$, this result suggested that the heat transfer fluid could be heated up to $98-116^{\circ}C$. The maximum temperature on the absorber surface was decreased with the increase of the collector shape factor, $L_p/L_w$ 3) There was a good agreement between the experimental and theoretical value of solar collector efficiency, ${\eta}$, which was proportional to the collector shape factor, $L_p/L_w$ 4) It is desirable to continue the study on the relationship between the collector shape factor, $L_p/L_w$, and the thermal efficiency of solar collector.

  • PDF

Preparation and Characteristics of CIGS nanopowder (CIGS nanopowder 제조 및 특성분석)

  • Ham, Chang-Woo;Suh, Jeong-Dae;Cho, Jung-Min;Song, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.371-372
    • /
    • 2009
  • We have prepared and characterized CIGS nanopowder for absorber layer of photovoltaic. CIGS nanopowder were obtained at $260^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$ and Se powder in solvent. The CIGS nanopowder were identified to have a typical chalcopyrite tetragonal structure by using X-ray diffraction(XRD), Inductively Coupled Plasma Auger Electron Spectroscopy (AES), Scanning Electron Microscopy(SEM).

  • PDF

Simulation of the First Kind LiBr-H2O Absorption Heat Pump (제1종 LiBr-H2O 흡수식 열펌프의 시뮬레이션)

  • Huh, J.Y.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-26
    • /
    • 1990
  • The first kind LiBr -$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber and condenser and the COP of the system are affected considerably by the operating conditions of heat pump system.

  • PDF

Study on the Prediction of Absorption Performance by the Optimization of a Vertical Absorber (수직형 흡수기 최적화에 따른 흡수 성능 예측에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.194-202
    • /
    • 2005
  • The present study was analytically and experimentally carried out to predict the absorption characteristics on combined heat and mass transfer process in a vertical falling film of variable absorbers. Heat and mass transfer enhancements were analytically investigated. Effects of geometric parameters by insert device (spring) and corrugate, flow pattern on absorption performances has been also investigated. Especially, the optimal values of absorber geometry (ID=22.8mm, L=1150m) and kinetic variables (solution flow rate, flow pattern) for maximum absorption performance has been predicted by the numerical analysis. The maximum absorption performance in a numerical analysis and experiment was shown at the wavy-flow by insert device (spring).

Study on Indium-free and Indium-reduced thin film Solar absorber materials for photovoltaic application

  • Kim, Kyoo-Ho;Wibowo, Rachmat Adhi
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.54-62
    • /
    • 2007
  • In this paper, we report the research highlight on the preparation and characterization of Indium-free $Cu_2ZnSnSe_4$ and Indium-reduced $CulnZnSe_2$ thin films in order to seek the viability of these absorber materials to be applied in thin film solar cells. The films of $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ were prepared using mixed binary chalcogenides powders. It was observed that Cu concentration was a function of substrate temperature as well as CuSe mole ratio in the target. Under an optimized condition, $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ thin films grew with strong [112]. [220/204] and [312/116] reflections. Both $Cu_2ZnSnSe_4\;and\;CulnZnSe_2$ films were found to exhibit a high absorption coefficient of $104^4cm^{-1}\;Cu_2ZnSnSe_4$ film showed a band gap of 1.5eV which closes to the optimum band gap of an ideal solar absorber for a solar cell. On the other side, an increase of optical band gap from 1.0 to 1.25eV was found to be proportional with an increase of Zn concentration in the $CulnZnSe_2$ film. All films in this study revealed a p-type semiconductor characteristic.

  • PDF

Development of Superconducting Transition Edge Sensors for Gamma Ray Detection (감마선 검출을 위한 초전도 상전이 센서)

  • Lee, Young-Hwa;Kim, Yong-Hamb
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • We are developing a sensitive gamma ray spectrometer based on superconducting transition edge sensors. The detector consists of a small piece of high purity Sn as an absorber and a Ti/Au bilayer as a temperature sensor. It is designed to measure the thermal signal caused by absorption of gamma rays. The mechanical support and the thermal contact between the absorber and the thermometer were made with Stycast epoxy. The bilayer was formed by e-beam evaporation and patterned by wet etching on top of a $SiN_X$ membrane. A sharp superconducting transition of the film was measured near 100 mK. When the film was biased to the edge of the transition, signals were observed due to single photon absorption emitted from an $^{241}Am$ source. The measured spectrum showed several characteristic peaks of the source including 59.5 keV gamma line. The full with at half maximum was about 900 eV for the 59.5 keV gamma line. The background was low enough to resolve low energy lines. Considerations to improve the energy resolution of the gamma ray spectrometer are also discussed.

  • PDF

Heating and Cooling System using the Sewage Source Absorption Refrigeration and Heat Pump Cycle (하수열을 이용한 냉난방시스템에 관한 연구)

  • Lee, Yong-Hwa;Shin, Hyun-Joon;Yoon, Hee-Chul;Park, Hyun-Gun
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2007
  • This paper concerns the study of absorption refrigeration and heat pump cycle to use sewage. Simulation analysis on the double-effect absorption refrigeration cycle with parallel and two-stage heat pump cycle has been performed. The working fluid is Lithium Bromide and water solution. The absorption refrigeration cycle use sewage as a cooling water for the absorber and condenser, and absorption refrigeration cycle does that as a chilled water for the evaporator of the first stage cycle. And the two-stage cycle consists of coupling double-effect with parallel and single effect cycle so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as a absorber temperature on the coefficient of performance have been studied for absorption refrigeration and heat pump cycle.