• Title/Summary/Keyword: Energy Validation

Search Result 653, Processing Time 0.033 seconds

Variable Density Yield Model for Irrigated Plantations of Dalbergia sissoo Grown Under Hot Arid Conditions in India

  • Tewari, Vindhya Prasad
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • Yield tables are a frequently used data base for regional timber resource forecasting. A normal yield table is based on two independent variables, age and site (species constant), and applies to fully stocked (or normal) stands while empirical yield tables are based on average rather than fully stocked stands. Normal and empirical yield tables essentially have many limitations. The limitations of normal and empirical yield tables led to the development of variable density yield tables. Mathematical models for estimating timber yields are usually developed by fitting a suitable equation to observed data. The model is then used to predict yields for conditions resembling those of the original data set. It may be accurate for the specific conditions, but of unproven accuracy or even entirely useless in other circumstances. Thus, these models tend to be specific rather than general and require validation before applying to other areas. Dalbergia sissoo forms a major portion of irrigated plantations in the hot desert of India and is an important timber tree species where stem wood is primarily used as timber. Variable density yield model is not available for this species which is very crucial in long-term planning for managing the plantations on a sustained basis. Thus, the objective of this study was to develop variable density yield model based on the data collected from 30 sample plots of D. sissoo laid out in IGNP area of Rajasthan State (India) and measured annually for 5 years. The best approximating model was selected based on the fit statistics among the models tested in the study. The model develop was evaluated based on quantitative and qualitative statistical criteria which showed that the model is statistically sound in prediction. The model can be safely applied on D. sissooo plantations in the study area or areas having similar conditions.

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

Identification and Validation of Symptom Clusters in Patients with Hepatocellular Carcinoma (간세포암 환자의 증상군 분류와 타당도 검증)

  • Cho, Myung-Sook;Kwon, In-Gak;Kim, Hee-Sun;Kim, Kyung-Hee;Ryu, Eun-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.39 no.5
    • /
    • pp.683-692
    • /
    • 2009
  • Purpose: The purpose of this study was to identify cancer-related symptom clusters and to validate the conceptual meanings of the revealed symptom clusters in patients with hepatocellular carcinoma. Methods: This study was a cross-sectional survey and methodological study. Patients with hepatocellular carcinoma (N=194) were recruited from a medical center in Seoul. The 20-item Symptom Checklist was used to assess patients' symptom severity. Selected symptoms were factored using principal-axis factoring with varimax rotation. To validate the revealed symptom clusters, the statistical differences were analyzed by status of patients' performance status, Child-Pugh classification, and mood state among symptom clusters. Results: Fatigue was the most prevalent symptom (97.4%), followed by lack of energy and stomach discomfort. Patients' symptom severity ratings fit a four-factor solution that explained 61.04% of the variance. These four factors were named pain-appetite cluster, fatigue cluster, itching-constipation cluster, and gastrointestinal cluster. The revealed symptom clusters were significantly different for patient performance status (ECOG-PSR), Child-Pugh class, anxiety, and depression. Conclusion: Knowing these symptom clusters may help nurses to understand reasonable mechanisms for the aggregation of symptoms. Efficient symptom management of disease-related and treatment-related symptoms is critical in promoting physical and emotional status in patients with hepatocellular carcinoma.

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 3차원 유동해석)

  • Kwon, Seong Ye;Lee, Seung-Ho;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.448-453
    • /
    • 2017
  • We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.

Assessment of Solar Insolation from COMS: Sulma and Cheongmi Watersheds (천리안 위성의 일사량 검증: 설마천, 청미천)

  • Baek, Jongjin;Byun, Kyunhyun;Kim, Dongkyun;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.137-149
    • /
    • 2013
  • Solar insolation is essential to understand the interaction between the earth and solar system, and it is a significant parameter that is utilized in various research fields including earth science, agriculture, and energy engineering. Although solar insolation is broadly measured in the ground-based observation station, it is difficult to identify the spatial distribution of solar insolation accurately. The remote sensing approach is known to have several benefits because it can provide continuous data sets for large area. In this study, we conducted the validation of solar insolation from COMS in the South Korea by comparing with flux tower observation. The results showed that the correlations between COMS and observation were high in both 30 minutes interval data and daily average data. Thus, we can identify that COMS can provide a reasonable estimate of solar insolation.

Availability of Land Surface Temperature from the COMS in the Korea Peninsula (한반도에서의 천리안 위성 지표면 온도 유용성 평가)

  • Baek, Jong-Jin;Choi, Min-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.755-765
    • /
    • 2012
  • The Land Surface Temperature (LST) is one of the significant factors to understand the water and energy cycles between the land surface and atmosphere. However, few previous studies for spatio-temporal variations of LST has been investigated. In this study, we conducted comparative analyses between the Communication, Ocean and Meteorological Satellite (COMS) and MOderate-Resolution Imaging Spectroradiometer (MODIS) LST data. We compared COMS data with observations to identify the accuracy and found relative underestimated patterns of the COMS data as compared to observations. We also found that COMS LST were underestimated in compare to MODIS LST. The Terra LST was verified to have more similar trends with the COMS LST rather than Aqua LST. While we identified the applicability of COMS based on the results of similar tendencies of two comparisons, more intensive validation research at a variety of field conditions should be conducted to gurantee current COMS LST.

CHALLENGING APPLICATIONS FOR FT-NIR SPECTROSCOPY

  • Goode, Jon G.;Londhe, Sameer;Dejesus, Steve;Wang, Qian
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4112-4112
    • /
    • 2001
  • The feasibility of NIR spectroscopy as a quick and nondestructive method for quality control of uniformity of coating thickness of pharmaceutical tablets was investigated. Near infrared spectra of a set of pharmaceutical tablets with varying coating thickness were measured with a diffuse reflectance fiber optic probe connected to a Broker IFS 28/N FT-NIR spectrometer. The challenging issues encountered in this study included: 1. The similarity of the formulation of the core and coating materials, 2. The lack of sufficient calibration samples and 3. The non-linear relationship between the NIR spectral intensity and coating: thickness. A peak at 7184 $cm^{-1}$ was identified that differed for the coating material and the core material when M spectra were collected at 2 $cm^{-1}$ resolution (0.4 nm at 7184 $cm^{-1}$). The study showed that the coating thickness can be analyzed by polynomial fitting of the peak area of the selected peak, while least squares calibration of the same data failed due to the lack of availability of sufficient calibration samples. Samples of coal powder and solid pieces of coal were analyzed by FT-NIR diffuse reflectance spectroscopy with the goal of predicting their ash content, percentage of volatile components, and energy content. The measurements were performed on a Broker Vector 22N spectrometer with a fiber optic probe. A partial least squares model was constructed for each of the parameters of interest for solid and powdered sample forms separately. Calibration models varied in size from 4 to 10 PLS ranks. Correlation coefficients for these models ranged from 86.6 to 95.0%, with root-mean-square errors of cross validation comparable to the corresponding reference measurement methods. The use of FT-NIR diffuse reflectance measurement techniques was found to be a significant improvement over existing measurement methodologies in terms of speed and ease of use, while maintaining the desired accuracy for all parameters and sample forms.(Figure Omitted).

  • PDF

Quasi 1D Nonequilibrium Analysis and Validation for Hypersonic Nozzle Design of Shock Tunnel (충격파 풍동의 극초음속 노즐 설계를 위한 Quasi 1D 비평형 해석 및 검증)

  • Kim, Seihwan;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.652-661
    • /
    • 2018
  • It is necessary to resolve the absolute velocity as well as Mach number to reflect the high temperature effect in high speed flow. So this region is classified as high enthalpy flows distinguished from high speed flows. Many facilities, such as arc-jet, shock tunnel, etc. has been used to obtain the high enthalpy flows at the ground level. However, it is difficult to define the exact test condition in this type of facilities, because some chemical reactions and energy transfer take place during the experiments. In the present study, a quasi 1D code considering the thermochemical non-equilibrium effect is developed to effectively estimate the test condition of a shock tunnel. Results show that the code gives reasonable solution compared with the results from the known experiments and 2D axisymmetric simulations.

Thermohydrodynamic Analysis and Pad Temperature Measurement of Tilting Pad Journal Bearing with Worn Pad (표면이 마모된 틸팅 패드 저널베어링의 열윤활 해석 및 온도 측정)

  • Lee, Donghyun;Sun, Kyungho;Kim, Byungock;Kang, Donghyuk
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.134-140
    • /
    • 2017
  • With the increase in adoption of tilting pad journal bearings (TPJBs), various failure mechanisms related to TPJBs have been reported, of which pad wear is a frequently reported one. Pad wear causes change in geometry of the bearing, which can sometimes result in the failure of the entire system. The objective of this research is to investigate the influence of pad wear on the pad temperature, which is one of the widely used condition monitoring methods for TPJBs. For the theoretical investigation, thermohydrodynamic (THD) analysis was conducted by solving the generalized Reynolds equation and the 3D energy equation. The results of the analysis show that the temperature of the loaded pad increases while that of the unloaded pad decreases, when there is wear on the loaded pads. In addition, the minimum film thickness decreases with an increase in the wear depth. A validation test was conducted with a test rig, which mimics the axial turbine when a test rotor is supported by two TPJBs. The test bearing consists of five pads with a diameter of 60 mm, and a resistance temperature detector (RTD) is installed in the pad for temperature monitoring. The test was performed by replacing the two loaded pads with the worn pad. The test result for the TPJB with wear depth of $30{\mu}m$ show that the temperatures of the loaded pads are $8^{\circ}C$ higher and that of the unloaded pad is $2.5^{\circ}C$ lower than that of the normal TPJB. In addition, the predicted pad temperature shows good agreement with the measured pad temperatures.