• Title/Summary/Keyword: Energy Transfer Resistance

Search Result 244, Processing Time 0.031 seconds

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

Photoelectrochemical Properties of $TiO_2$ Electrodes Prepared Using Chemical Functionalized Binders

  • Song, Yongwhan;Kim, Sangki;Yang, Jaechang;Park, Junho;Kim, Myoungsoo;Gu, Halbon;Park, Kyunghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.60.1-60.1
    • /
    • 2010
  • Chemically functionalized plant oils such as acrylated epoxidized soybean oil (AESO) and maleinized acrylated epoxidized soybean oil (MAESO) were used as new bio-based binders for $TiO_2$ electrodes of dye-sensitized solar cells (DSSC). More porous networks and larger porosities were fabricated on the $TiO_2$ films using plant oil binders due to the larger number of functionalities, in comparison with the film using polyethylene glycol (PEG). The charge-transfer resistance in the $TiO_2$ films was considerably shrunk due to the reduced impurity states. The short circuit photocurrent (Isc) and the open circuit photovoltage (Voc) of the cell using plant oil binders increased and the conversion efficiency improved significantly.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor (슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF

A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts (귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구)

  • 金京林
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

Electrical Properties of Organic Thin Films by Electric Field Stimulus (전계자격에 따른 유기박막의 전기 특성)

  • Chon, D.K.;Choi, Y.I.;Kim, J.M.;Cha, I.S.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.807-809
    • /
    • 1998
  • We give pressure stimulation into organic thin films and detect the induced displacement current, In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(Kapton-Polyimide)/Au and I-V properties of the device is measured from 0(V) to +5(V). The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results.

  • PDF

Solid State Dye-Sensitized Solar Cells Employing Polymer Electrolytes : Oligomer Approach

  • Kang, Yong-Soo;Lee, Yong-Gun;Kang, Moon-Sung;Kim, Jong-Hak;Char, Kook-Choen
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.63-64
    • /
    • 2006
  • The solid state dye-sensitized solar cells (DSSCs) employing polymer electrolytes show high overall energy conversion efficiency as high as 4.5 % at 1 sun conditions. The improved efficiency may be primarily due to the enlarged interfacial contact area between the electrolyte and dyes in addition to the increased ionic conductivity, which were done by utilizing liquid oligomers, followed by in situ self-solidification, to form the solid DSSCs: "Oligomer Approach". The effect of the charge transfer resistance at the counter electrode side on the efficiency has also been investigated.

  • PDF

Phosphagen Kinases of Parasites: Unexplored Chemotherapeutic Targets

  • Jarilla, Blanca R.;Agatsuma, Takeshi
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.4
    • /
    • pp.281-284
    • /
    • 2010
  • Due to the possible emergence of resistance and safety concerns on certain treatments, development of new drugs against parasites is essential for the effective control and subsequent eradication of parasitic infections. Several drug targets have been identified which are either genes or proteins essential for the parasite survival and distinct from the hosts. These include the phosphagen kinases (PKs) which are enzymes that playa key role in maintenance of homeostasis in cells exhibiting high or variable rates of energy turnover by catalizing the reversible transfer of a phosphate between ATP and naturally occurring guanidine compounds. PKs have been identified in a number of important human and animal parasites and were also shown to be significant in survival and adaptation to stress conditions. The potential of parasite PKs as novel chemotherapeutic targets remains to be explored.