• Title/Summary/Keyword: Energy Starvation

Search Result 49, Processing Time 0.027 seconds

Effects of Reactant Gas Flow Rates and Starvation on Phosphoric Acid Fuel Cell Performance (인산형 연료전지 발전성능에 미치는 반응기체 공급량 및 공급중단의 영향)

  • Song, Rak-Hyun;Kim, Chang-Soo;Choi, Byung-Woo;Choi, Soo-Hyun;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.662-665
    • /
    • 1992
  • Effects of reactant gas flow rates and starvation on phosphoric acid fuel cell performance were studied. As the reactant gas flow rates increased, the cell performance increased and then the cell maintained constant performance. The optimum flow rates of hydrogen, oxygen and air under galvanostatic condition of 150 mA/$\textrm{cm}^2$ are found to be 3cc/min${\cdot}\textrm{cm}^2$, 4cc/min${\cdot}\textrm{cm}^2$, and 15cc/min${\cdot}\textrm{cm}^2$, respectively. Hydrogen and oxygen starvation resulted in voltage loss of about 5mV and 0-2mV, respectively. The voltage loss was independent of starvation time. These results were discussed from the point of view of electrochemical reaction of the cell.

  • PDF

A Study to Simulate Cell Voltage-Reversal Behavior Caused by Local Hydrogen Starvation in a Stack of Fuel Cell Vehicle (연료전지차 스택 내 국부적 수소 부족에 기인한 셀 역전압 거동 모사에 대한 연구)

  • Park, Ji Yeon;Im, Se Joon;Han, Kookil;Hong, Bo Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.311-319
    • /
    • 2013
  • A clear understanding on cell voltage-reversal behavior due to local hydrogen starvation in a stack is of paramount importance to operate the fuel cell vehicle (FCV) stably since it affects significantly the cell performance and durability. In the present study, a novel experimental method to simulate the local cell voltage-reversal behavior caused by local hydrogen starvation, which typically occurs only one or several cells out of several hundred cells in a stack of FCV, has been proposed. Contrary to the conventional method of overall fuel starvation, the present method of local hydrogen starvation caused the local cell voltage-reversal behavior in a stack very well. Degradation of both membrane electrode assembly (i.e., pin-hole formation) and gas diffusion layer due to an excessive exothermic heat under voltage-reversal condition was also observed clearly.

Effects of starvation-induced negative energy balance on endoplasmic reticulum stress in the liver of cows

  • Islam, Md Aminul;Adachi, Shuya;Shiiba, Yuichiroh;Takeda, Ken-ichi;Haga, Satoshi;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • Objective: Endoplasmic reticulum (ER) stress engages the unfolded protein response (UPR) that serves as an important mechanism for modulating hepatic fatty acid oxidation and lipogenesis. Chronic fasting in mice induced the UPR activation to regulate lipid metabolism. However, there is no direct evidence of whether negative energy balance (NEB) induces ER stress in the liver of cows. This study aimed to elucidate the relationship between the NEB attributed to feed deprivation and ER stress in bovine hepatocytes. Methods: Blood samples and liver biopsy tissues were collected from 6 non-lactating cows before and after their starvation for 48 h. The blood non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose level were analyzed. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with UPR and lipid metabolism. Results: The starvation increased the plasma BHBA and NEFA levels and decreased the glucose level. Additionally, the starvation caused significant increases in the mRNA expression level of spliced X-box binding protein 1 (XBP1s) and the protein level of phosphorylated inositol-requiring kinase 1 alpha (p-IRE1α; an upstream protein of XBP1) in the liver. The mRNA expression levels of peroxisome proliferator-activated receptor alpha and its target fatty acid oxidation- and ketogenesis-related genes were significantly upregulated by the starvation-mediated NEB. Furthermore, we found that the mRNA expression levels of lipogenic genes were not significantly changed after starvation. Conclusion: These findings suggest that in the initial stage of NEB in dairy cows, the liver coordinates an adaptive response by activating the IRE1 arm of the UPR to enhance ketogenesis, thereby avoiding a fatty liver status.

Effect of Starvation on Contractility of Lidocaine-Depressed Isolated Rat Atria (Lidocaine 억제 심장의 수축성에 대한 내인성 지질의 영향)

  • Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 1994
  • The experiments were performed to determine whether lidocaine interferes with the utilization of lipid as source of energy fuel for the contractile process by the isolated rat atria. Rats were starved for two days in order to inerease the lipid content of the heart. Atria from starved rats were better able to maintain their contractility in the absence of exgenous substrate, and also were more resistant to depression by lidocaine than atria from fed rats. Starvation results in a marked loss of body weight in rats. In contrast to the starved rats, the body weight of fed rats inereased with time. The smaller reduction in contractile activity of atria from the starved rats may suggest that endogenous lipid accumulates during starvation period and is used as an energy source for the contractile process in the face of a lidocaine-induced blockade in glycolysis.

  • PDF

PEMFC performance on reverse voltage by fuel starvation (연료 부족에 의한 고분자전해질형 연료전지의 역전압 성능)

  • Lee, Hung-Joo;Song, Hyun-Do;Kim, Jun-Bom
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • The performance of proton exchange membrane fuel cell was decreased by reverse voltage using fuel starvation. Performance decrease in local area could be affected by duration and extent of reverse voltage. Hydrogen and air stoichiometic ratio was used to find the experimental condition of abrupt voltage decrease. LabVIEW was used to make control logic of automatic load off system in preset voltage. Reverse voltage experiment was done down to -1.2 V at constant current condition. When fuel cell voltage was reached to preset voltage, electronic load was disconnected to make open circuit voltage for 1 minute. Fuel cell performance was checked every 5 cycle and the degree of performance decrease and/or recovery was estimated. Ohmic resistance and charge transfer resistance were increased and platinum surface area was reduced 41% after reverse voltage experiment.

Effects of Starvation on Lipid Metabolism and Gluconeogenesis in Yak

  • Yu, Xiaoqiang;Peng, Quanhui;Luo, Xiaolin;An, Tianwu;Guan, Jiuqiang;Wang, Zhisheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1593-1600
    • /
    • 2016
  • This research was conducted to investigate the physiological consequences of undernourished yak. Twelve Maiwa yak ($110.3{\pm}5.85kg$) were randomly divided into two groups (baseline and starvation group). The yak of baseline group were slaughtered at day 0, while the other group of yak were kept in shed without feed but allowed free access to water, salt and free movement for 9 days. Blood samples of the starvation group were collected on day 0, 1, 2, 3, 5, 7, 9 and the starved yak were slaughtered after the final blood sample collection. The liver and muscle glycogen of the starvation group decreased (p<0.01), and the lipid content also decreased while the content of moisture and ash increased (p<0.05) both in Longissimus dorsi and liver compared with the baseline group. The plasma insulin and glucose of the starved yak decreased at first and then kept stable but at a relatively lower level during the following days (p<0.01). On the contrary, the non-esterified fatty acids was increased (p<0.01). Beyond our expectation, the ketone bodies of ${\beta}$-hydroxybutyric acid and acetoacetic acid decreased with prolonged starvation (p<0.01). Furthermore, the mRNA expression of lipogenetic enzyme fatty acid synthase and lipoprotein lipase in subcutaneous adipose tissue of starved yak were down-regulated (p<0.01), whereas the mRNA expression of lipolytic enzyme carnitine palmitoyltransferase-1 and hormone sensitive lipase were up-regulated (p<0.01) after 9 days of starvation. The phosphoenolpyruvate carboxykinase and pyruvate carboxylase, responsible for hepatic gluconeogenesis were up-regulated (p<0.01). It was concluded that yak derive energy by gluconeogenesis promotion and fat storage mobilization during starvation but without ketone body accumulation in the plasma.

Analysis of Differential-expressed Proteins of Acidithiobacillus ferrooxidans Grown under Phosphate Starvation

  • He, Zhiguo;Zhong, Hui;Hu, Yuehua;Xiao, Shengmu;Liu, Jiarshe;Xu, Jin;Li, Guiyuen
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.545-549
    • /
    • 2005
  • Acidithiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Acidithiobacillus ferrooxidans under phosphate starvation and normal condition have been tested, showing lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Acidithiobacillus ferrooxidans cultivated with normal cultivating condition and from 20 to 60 hrs for Acidithiobacillus ferrooxidans cultivated phosphate starvation. Differences of protein patterns of Acidithiobacillus ferrooxidans growing in case of normal or phosphate starvation were separately investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ionization (MALDI)-Mass spectrometry. There were total 6 protein spots identified, which were Recombination protein recA, RNA helicase, AP2 domain-containing transcription factor, NADH dehydrogenase I chain D, Hyothetical protein PF1669, and Transaldolase STY3758. From the 6 identified protein spots, 3 proteins were found to be decreased in expression at the cultivating condition of phosphate starvation, while another three upregulated.

Variations in Reserved Nutrient Consumption and Growth of Pacific Oyster (Crassostra gigas) Larvae during Starvation (참굴 (Crassostrea gigas) 유생의 절식에 따른 성장 및 체내 에너지원의 소비변화)

  • Hur, Young-Baek;Kim, Tae-Eic;Lee, Seung-Ju;Hur, Sung-Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.489-494
    • /
    • 2010
  • The nutritional demand of oyster larva (Crassostrea gigas) were investigated to determine the optimal culture conditions and improve micro-algae utilization. Changes in nutrients and shell growth were examined in fed and 96-h (48 h in late umbone stage) oysters at four larval stages. Shell growth increased significantly in D shape larvae, regardless of feeding variations. No growth was observed in starved larvae, except in shell length of umbone (to 11.9 ${\mu}m$). Fed larvae showed significant growth in all development stages (P < 0.05). During starvation, lipids were most significantly decreased in all larval stages (by 76.8%, 68.3%, 76.3%, and 40.3%, respectively), followed by protein (41.1%, 31.1%, 33.1%, 16.7%) and nitrogen-free extracts (40.8%, 24.3%, 36.9%, 20.1%), Gross energy (kcal/g) consumption in each larval stage was 49.6%, 35.1%, 39.1%, and 20.4%, respectively. Our results indicate that lipids are the most important energy source during the early larval development stages of C. gigas.

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

Effects of Dietary n-3 Highly Unsaturated Fatty Acids on Growth and Biochemical Changes in Korean Rockfish Sebastes schlegeli III. Changes of Body Compositions with Starvation (사료의 n-3계 고도불포화지방산 함량에 따른 조피볼락 Sebastes schlegeli의 성장 및 생화학적 변화 III. 절식시 체조성의 변화)

  • LEE Sang-Min;HUR Sung Bum
    • Journal of Aquaculture
    • /
    • v.6 no.3
    • /
    • pp.199-211
    • /
    • 1993
  • In order to elucidate the effect of dietary n-3 highly unsaturated fatty acids (n-3HUFA) on the changes of body weight and chemical compositions in the Korean rockfish during starvation, the fish were not fed for 9 weeks after fed different levels $(0\~1.5\%)$ of n-3 HUFA for 10 weeks. The higher level of n-3HUF A was contained in the diets, the slower body weight loss was resulted (P< 0.05). The decreasing rates of the body nutrients of the fish were significantly higher in the fish fed n-3HUF A deficient diets than those of the fish fed n-3 HUF A sufficient diets. Protein and lipid contents of the whole body were decreased with starvation whereas moisture content was increased. Decrease of lipid was mainly due to the decrease of nonpolar lipid. Amounts of polar lipid in the whole body were almost constant throughout the starvation, meaning not being affected by dietary n-3HUF A levels. Percentage of 22: 6n-3 was increased in the polar lipid fraction, but monoenic acids (16:1, 18:1), n-3 series (18:3, 18 4, 20:4) and n-6 series (20:2, 22:4, 22:5) were decreased with starvation. Fatty acid compositions of nonpolar lipid were not changed with starvation. These results suggest that all fatty acids of nonpolar lipid are equally utilized for energy during starvation.

  • PDF