• Title/Summary/Keyword: Energy Star

Search Result 241, Processing Time 0.026 seconds

Planar, Air-breathing PEMFC Systems Using Sodium Borohydride ($NaBH_4$를 이용만 공기호흡형 수소연료전지에 대한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.300-308
    • /
    • 2009
  • In a pursuit of the development of alternative mobile power sources with a high energy density, a planar and air-breathing PEMFCs with a new type of hydrogen cartridge which uses onsite $H_2$ generated from sodium borohydride ($NaBH_4$) hydrolysis have been investigated for use in advanced power systems. Two types of $H_2$ generation through $NaBH_4$ hydrolysis are available: (1) using organic acids such as sulphuric acid, malic acid, and sodium hydrogen carbonate in aqueous solution with solid $NaBH_4$ and (2) using solid selected catalysts such as Pt, Ru, CoB into the stabilized alkaline $NaBH_4$ solution. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two methods mentioned above. The effects of flow rate of stabilized $NaBH_4$ solution, MEA (Membrane Electrode Assembly) improvement, and type and flow control of the catalytic acidic solution have been studied and the cell performances of the planar, air-breathing PEMFCs using $NaBH_4$ has been measured from aspects of power density, fuel efficiency, energy density, and fast response of cell. In our experiments, planar, air-breathing PEMFCs using $NaBH_4$ achieved to maximum power density of 128mW/$cm^2$ at 0.7V and energy efficiency of 46% and has many advantages such as low operating temperature, sustained operation at a high power density, compactness, the potential for low cost and volume, long stack life, fast star-up and suitability for discontinuous operation.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

The Simulation about the Air Flow and Pressure Drop inside the Metal Foam (발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Jin, Mei-Hua;Jang, Seok-Jun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

A Basic Study on the Effect of the Wind Pressure according to Form on the Flat Roof mounted PV System (평지붕 PV거치 시스템의 형태에 따른 풍압영향에 관한 기초연구)

  • Yun, Doo-Young;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.105-112
    • /
    • 2013
  • The new renewable energy became popular as a clean and sustainable alternative energy under the circumstances that the entire world is facing severe abnormal climate due to the use of fossil fuel, and among which, solar energy can be obtained anywhere and is not difficult to apply it into the existing buildings, which makes it possible to be widely distributed. However, as PV module is installed into a single plate system, it shows structural weaknesses which are vulnerable to wind load and give loss to design elements in external appearance. Accordingly, this study planned one-step parallel system to complement the problems occurring from a single plate system and used STAR-CCM+ V.8 made by CD-Adapco, a computational fluid dynamics(CFD) simulation tool to measure wind load stability and support based on the design standards for a single plate system and one-step parallel system. Building height was limited to less than 10m and wind speed was given when increasing from 35m/s to 50m/s by 5m/s on PV system installed into the flat roof. In this case, our analysis suggested that step-one parallel system was in class 7-9 according to Beaufort's wind power classification, which did not have an impact on the fixed PV system, and the single plate system is considered to cause risks in designing wind speed in central districts because it is more than wind power class 12.

INFRARED SPECTRAL ENERGY DISTRIBUTION OF GALAXIES IN THE AKARI ALL SKY SURVEY: CORRELATIONS WITH GALAXY PROPERTIES AND THEIR PHYSICAL ORIGIN

  • Makiya, R.;Totani, T.;Takeuchi, T.T.;Nagashima, M.;Kobayashi, M.A.R.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.325-329
    • /
    • 2012
  • We will report our recent study on the properties of more than 1,600 galaxies detected by the AKARI All-Sky Survey with physical quantities based on optical and 21-cm observations, to understand the physics determining the infrared spectral energy distribution (Totani et al., 2011). We discover a tight linear correlation for normal star-forming galaxies between the radiation field strength of dust heating (corresponding to dust temperature) and the galactic-scale infrared radiation field, $L_{TIR}/R^2$. This is the tightest correlation of dust temperature ever known, and the dispersion along the mean relation is 13% in dust temperature. This relation can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. We also find that the number of galaxies sharply drops when galaxies become optically thin against dust-heating radiation, indicating that a feedback process to galaxy formation (e.g., by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. We discuss implications from these findings for the $M_{H_I}$ -size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.

A study on the corporate culture of BYD

  • Shang, Xian-Fa;Choi, Myeong-Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.135-140
    • /
    • 2020
  • The main battlefield of 'made in China 2025' proposed by the Chinese government is the deep integration of industrialization and informatization, among which intelligent manufacturing and new energy vehicles are the key links. New energy vehicle refers to the use of unconventional automotive fuel as a power source (or use conventional automotive fuel, the use of new vehicle-mounted power plant), integrated vehicle power control and driving aspects of advanced technology, the formation of advanced technical principles, with new technology and the structure of the vehicle. BYD's success in the battery, I T and automobile industries has attracted the attention of the industry, making it a shining new star in the Chinese business community. BYD 's innovation, diversification and corporate culture construction have certain enlightenment to the development of China's small and medium-sized enterprises. Therefore, by looking at the Chinese network literature, about BYD's research mainly focused on the development strategy, corporate finance, corporate performance, and corporate marketing, etc. This paper will take BYD as the research object and focus on corporate culture. Through literature analysis and qualitative analysis, it will summarize and further analyze the unique corporate culture of BYD, its important role, and provide relevant theoretical references for the construction and development of corporate culture in other industries.

THERMAL MODELS AND FAR INFRARED EMISSION OF ASTEROIDS

  • KIM SAM;LEE HYUNG MOK;NAKAGAWA TAKAO;HASEGAWA SUNAO
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • ASTRO-F /FIS will carry out all sky survey in the wavelength from 50 to 200 ${\mu}m$. At far infrared, stars and galaxies may not be good calibration sources because the IR fluxes could be sensitive to the dust shell of stars and star formation activities of galaxies. On the other hand, asteroids could be good calibration sources at far infrared because of rather simple spectral energy distribution. Recent progresses in thermal models for asteroids enable us to calculate the far infrared flux fairly accurately. We have derived the Bond albedos and diameters for 559 asteroids based on the IRAS and ground based optical data. Using these thermal parameters and standard thermal model, we have calculated the spectral energy distributions of asteroids from 10 to 200 ${\mu}m$. We have found that more than $70\%$ of our sample asteroids have flux errors less than $10\%$ within the context of the best fitting thermal models. In order to assess flux uncertainties due to model parameters, we have computed SEDs by varing external parameters such as emissivity, beaming parameter and phase integral. We have found that about 100 asteroids can be modeled to be better than $5.8\%$ of flux uncertainties. The systematic effects due to uncertainties in phase integral are not so important.

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

A Study on the Condition of LED Lights Flicker (국내 LED 조명등에서 플리커 현상에 관한 연구)

  • Heo, Min;Ko, Jae-jun;Kim, Chung-hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.729-735
    • /
    • 2016
  • It is highly important issue to use an energy efficiently for sustainable prosperity of mankind. From this point of view, using LED lighting can be a good alternative because it has a lot of advantages such as high efficiency, long life time and eco-friendly manufacturing process. That is the reason why using LED lighting has been encouraged worldwide. However, in situations that LED lighting is replacing traditional lighting quickly, the problem of the flicker of LED lighting has emerged as an important issue. Therefore, in foreign countries like US or Japan in order to ensure the reliability of LED lighting, study for flickering effects of the human body and test methods are have been actively conducted. But related research in domestic situation is an insufficient condition. In this study, a flicker characteristic was measured conventional lamps such as incandescent lamps or fluorescent lamp and 81 items of LED lightings which are distributed in domestic markets.

Effect of Air Admission on Pressure Pulsation in a Francis Turbine (급기가 프란시스 수차의 수압 맥동에 미치는 영향)

  • Jeon, Yunheung;Park, Sihoon;Choi, Hansu;Park, Jungwan
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.9-15
    • /
    • 2014
  • In this study pressure and shaft torque pulsation were measured with variation of head and flow during the model test for a 15 MW Francis Turbine. Pressure pulsations were measured at the inlet of the spiral casing and 4 points in the cone of the diffuser and shaft torque pulsation at the upper position of the turbine. The maximum amplitude of pressure pulsation appeared 2.03% of the maximum rated head with the frequency of 25% of the rated revolution and at the guide vane opening of $10^{\circ}$. Shaft torque pulsation appeared 0.01% of the rated shaft torque, fairly low value. Air was admitted through the cone and pressure pulsation gradually decreased with increase of air flow and kept nearly constant after 5% of the rated flow. A new Francis turbine of which specific speed is 115 m-kW had been designed to rehabilitate the old one and the model test was performed at EPFL. The commercial code, STAR-$CCM^+$ was used for numerical simulation of flow.