• 제목/요약/키워드: Energy Savings

검색결과 577건 처리시간 0.027초

효율향상 프로그램의 최적 수요관리목표량 산정 (Estimation of Optimal Target Amount for Efficiency Improvement Program of DSM)

  • 소철호;박종진;김진오;조중삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.842-843
    • /
    • 2007
  • In this paper, the proper rebate level can be decided in programs of energy savings by solving an optimization problem with an objective function, which satisfies a maximum value of total energy savings. And then, each prevalence amount is estimated by using virtual Bass model which is a function of rebate level, instead of the conventional Bass model. Finally, by cost/benefit analysis of the estimated prevalence amounts, the priority order is obtained for the investment of each program. The priority order obtained in this way may result the improvement of investment efficiency for DSM(Demand-Side Management) programs and the reasonable plan decision for supply and demand in power system.

  • PDF

실대실험에 의한 에어베리어형 페리미터레스 공조시스템의 실내 열환경 평가 (Evaluation of Thermal Environment through Large-scale Model Experiment on Air-barrier Type Perimeter-less System)

  • 김용경;이정재
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.970-978
    • /
    • 2003
  • This paper aims at suggesting design guidelines for a perimeter-less HVAC system that contributes energy savings. Perimeter-less HVAC system is one that relieves difficulties such as handling mixing loss, uneven radiative environment, and maintenance and repair. It prevents heat load gained through window and outdoor wall without modifying a previously equipped building skin system. In this paper, we conducted a large-scale model experiment to see how the push-pull air flow would handle indoor heat to obtain an optimized perimeter-less design, and then we plan to perform several kinds of CFD (computational fluid dynamics) cases through numerical simulation

멀티형 히트펌프 시스템 컴퓨터 시뮬레이션과 실험적 검증 (Multi type heat pump system computer simulation and experimental verification)

  • 한도영;정민영
    • 설비공학논문집
    • /
    • 제12권1호
    • /
    • pp.12-19
    • /
    • 2000
  • The multi type heat pump system may provide more energy savings and better environmental conditions than the single type heat pump system may do. In order to design a multi type heat pump system, it may be recommended to develop the system simulation program, which can predict the characteristics of the system such as unit capacities, power consumptions, and system COP's. In this study, the steady state simulation program of the multi type heat pump system was developed. The results from the simulation program were compared with those from the experimental tests which were performed in the environmental chamber, Cooling tests show 3.11% and 0.94% of error in capacity and COP, and heating tests show 3.30% and 1.90% of error in capacity and COP, respectively. Therefore, the steady state simulation program developed for this study can effectively be used for the design and the performance prediction of the multi type heat pump system.

  • PDF

인터럽트 병합 최적화를 통한 네트워크 장치 에너지 절감 방법 연구 (A Study on Energy Savings in a Network Interface Card Based on Optimization of Interrupt Coalescing)

  • 이재열;한재일;김영만
    • 한국IT서비스학회지
    • /
    • 제14권3호
    • /
    • pp.183-196
    • /
    • 2015
  • The concept of energy-efficient networking has begun to spread in the past few years, gaining increasing popularity. A common opinion among networking researchers is that the sole introduction of low consumption silicon technologies may not be enough to effectively curb energy requirements. Thus, for disruptively boosting the network energy efficiency, these hardware enhancements must be integrated with ad-hoc mechanisms that explicitly manage energy saving, by exploiting network-specific features. The IEEE 802.3az Energy Efficient Ethernet (EEE) standard is one of such efforts. EEE introduces a low power mode for the most common Ethernet physical layer standards and is expected to provide large energy savings. However, it has been shown that EEE may not achieve good energy efficiency because mode transition overheads can be significant, leading to almost full energy consumption even at low utilization levels. Coalescing techniques such as packet coalescing and interrupt coalescing were proposed to improve energy efficiency of EEE, but their implementations typically adopt a simple policy that employs a few fixed values for coalescing parameters, thus it is difficult to achieve optimal energy efficiency. The paper proposes adaptive interrupt coalescing (AIC) that adopts an optimal policy that could not only improve energy efficiency but support performance. AIC has been implemented at the sender side with the Intel 82579 network interface card (NIC) and e1000e Linux device driver. The experiments were performed at 100 M bps transfer rate and show that energy efficiency of AIC is improved in most cases despite performance consideration and in the best case can be improved up to 37% compared to that of conventional interrupt coalescing techniques.

$CO_2$ 직접 제거를 통한 다중이용시설의 에너지 절감 및 경제적 효과에 대한 실험적 연구 (Experimental studies of energy savings and economic effects by direct removal of carbon dioxide in the multi-use facility)

  • 김요섭;이주열;최진식;신재란;임윤희;박병현;김윤신
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.466-471
    • /
    • 2014
  • It is important to develop the smart ventilation system in order to minimize a building energy consumption using ventilation. In this study, We evaluated the efficiency of the smart ventilation system being developed at the nursery. To evaluate the energy savings and carbon dioxide removal efficiency, two kinds of experimental conditions were compared. First, air conditioner and Smart HVAC system were operated. Second, air conditioner was operating and external air was put into the inside by rate of air circulation. It was more effective when working with air conditioning and ventilation system at the same time. If the Smart HVAC system is applied in a multi-use facility, indoor air quality will be comfortable and the social cost will be reduced.

태양전지와 LED를 이용한 인삼재배용 유리온실의 조도 시뮬레이션 (The Glass Greenhouse's Lighting Simulation for Ginseng with Solar Cell and LED)

  • 이붕주
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.14-19
    • /
    • 2019
  • 본 연구에서는 Si 및 DSSC의 태양 전지와 LED를 활용하여 제작될 유리 온실을 제작하기 전에 조명시뮬레이션 프로그램인 리룩스를 활용하여 최적의 유리 온실 설계 조건을 찾고자 진행 되었다. 천장의 투과율 15%과 측면의 투과율 40%을 기준으로 한 태양 전지가 다르게 설치되는 점을 감안하여 자연광에 따른 조명 시뮬레이션을 한 결과에 의하면, 유리 온실 건축물은 설계시 태양의 궤도에 대해 90도(북남방향) 배향 설계하는 것이 자연광을 가장 효과적으로 활용 할 수 있는 것을 확인하였고, 유리 온실내의 최적의 식물 성장을 위하여 자연광 조건을 고려한 시간별 인공 광원의 제어를 하는 경우 최대 에너지 절감은 하지인 경우 5.6 kwh (LED 제어 전 대비 42% 수준), 동지인 경우 7.8 kwh (LED 제어 전 대비 58% 수준)의 에너지 절감이 가능하며 광보상점 이상의 최적의 광특성 조건에서 인삼 재배가 가능함을 확인하였다.

ECONOMIC ASSESSMENT OF THE SOLAR-ENERGY SYSTEM USING LIFE CYCLE COST ANALYSIS

  • Chang-Yoon Ji;Dong-Won Jang;Taehoon Hong;Chang-Taek Hyun
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.669-675
    • /
    • 2009
  • As the use of new and renewable energy is one of the ways by which the exhaustion of fossil fuels and the other existing environmental problems can be addressed, a policy of spreading information regarding it and of conducting R&D related to it is currently being implemented in advanced countries. In the construction field, the concept of "green building" was born, and the application of this concept has increased, with the end in view of achieving energy savings, resource savings, and recycling, and of conserving the natural environment. In this context, the government of Korea amended the "Law on the Development, Use, and Promotion of New and Recycled Energy" in 2004, which contains 11 provisions related to new and renewable energy and their sources, including solar and geothermal energy as well as sunlight, water, rainfall, and organisms. Since solar-energy should be used instead of fossil fuels by converting sunlight directly into electricity, many researches on this subject are in progress. There are few researches, however, employing the economic approach to the subject. Thus, in this study, an economic assessment of the solar-energy system was conducted using both life cycle cost (LCC) analysis and sensitivity analysis. The results of the LCC analysis show that the solar-energy system will become economically better than the fossil fuel system after 16 years, although the initial construction cost of the solar-energy system is higher than that of the fossil fuel system. The results of this study are expected to be used in selecting an eco-friendly and economical solar-energy system when the construction of a green building is planned.

  • PDF