• Title/Summary/Keyword: Energy Resolution

Search Result 1,076, Processing Time 0.031 seconds

A Monochromatic X-Ray CT Using a CdTe Array Detector with Variable Spatial Resolution

  • Tokumori, Kenji;Toyofuku, Fukai;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.411-414
    • /
    • 2002
  • The CdTe semiconductor detector has a higher detection efficiency for x-rays and $\square$amma rays and a wider energy band gap compared with Si and Ge semiconductor detectors. Therefore, the size of the detector element can be made small, and can be operated at room temperature. The interaction between a CdTe detector and incident x-rays is mainly photoelectric absorption in the photon energy range of up to 100 keV. In this energy range, Compton effects are almost negligible. We have developed a 256 channel CdTe array detector system for monochromatic x-ray CT using synchrotron radiation. The CdTe array detector system, the element size of which is 1.98 mm (h) x 1.98 mm (w) x 0.5 mm (t), was operated in photon counting mode. In order to improve the spatial resolution, we tilted the CdTe array detector against the incident parallel monochromatic x-ray beam. The experiments were performed at the BL20B2 experimental hutch in SPring-8. The energy of incident monochromatic x-rays was set at 55 keV. Phantom measurements were performed at the detector angle of 0, 30 and 45 degrees against the incident parallel monochromatic x-rays. The linear attenuation coefficients were calculated from the reconstructed CT images. By increasing the detector angle, the spatial resolutions were improved. There was no significant difference between the linear attenuation coefficients which were corrected by the detector angle. It was found that this method was useful for improving the spatial resolution in a parallel monochromatic x-ray CT system.

  • PDF

Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment

  • Kim, Junhyeok;Park, Kyeongjin;Hwang, Jisung;Kim, Hojik;Kim, Jinhwan;Kim, Hyunduk;Jung, Sung-Hee;Kim, Youngsug;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1091-1097
    • /
    • 2019
  • After the Fukushima accident in 2011, there has been increased public concern about radioactive contamination of water resources through fallout in neighboring countries. However, there is still no available initial response system that can promptly detect radionuclides. The purpose of this research is to develop the most efficient gamma spectrometer to monitor radionuclides in an aquatic environment. We chose a thallium-doped sodium iodide (NaI(Tl)) scintillator readout with a silicon photo multiplier (SiPM) due to its compactness and low operating voltage. Three types of a scintillation detector were tested. One was composed of a scintillator and a photomultiplier tube (PMT) as a reference; another system consisted of a scintillator and an array of SiPMs with a light guide; and the other was a scintillator directly coupled with an array of SiPMs. Among the SiPM-based detectors, the direct coupling system showed the best energy resolution at all energy peaks. It achieved 9.76% energy resolution for a 662 keV gamma ray. Through additional experiments and a simulation, we proved that the light guide degraded energy resolution with increasing statistical uncertainty. The results indicated that the SiPM-based scintillation detector with no light guide is the most efficient design for monitoring radionuclides in an aquatic environment.

A Study on Effect of Improvement Plan for Wind Energy Forecasting (풍력 발전 예보 정확도 향상을 위한 국지 기상장 수치모의 개선 방안 연구)

  • Jung, Ji-A;Lee, Hwa-Woon;Jeon, Won-Bae;Kim, Dong-Hyeok;Kim, Hyun-Goo;Kang, Young-Heack
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • This study investigates the impact of enhanced regional meteorological fields on improvement of wind energy forecasting accuracy in the southwestern coast of the Korean Peninsula. To clarify the effect of detailed surface boundary data and application of analysis nudging technique on simulated meteorological fields, several WRF simulations were carried out. Case_LT, which is a simulation with high resolution terrain height and land use data, shows the most remarkable accuracy improvement along the shoreline mainly due to modified surface characteristics such as albedo, roughness length and thermal inertia. Case_RS with high resolution SST data shows accurate SST distributions compared to observation data, and they led to change in land and sea breeze circulation. Case_GN, grid nudging applied simulation, also shows changed temperature and wind fields. Especially, the application of grid nudging dominantly influences on the change of horizontal wind components in comparison with vertical wind component.

Construction and performance evaluation of a medium energy ion scattering spectroscopy system (중 에너지 이온산란 분광장치의 제작 및 성능 평가)

  • 김현경;문대원;김영필;이재철;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.97-102
    • /
    • 1997
  • A medium energy ion scattering spectroscopy(ME1S) system has been developed and tested.In the MEIS system a toroidal electrostatic energy analyzer(TEA) and a two dimensional position sensitivedetector(PSD) were used. The energy resolution of MEIS system was estimated to be less than $4\times 10^{-3}$ and the overall angular resolution was less than 0.3". From the MEIS spectrum of $Ta_2O_5$(300 $\AA$)/ onSi analyzedousing 60 keV $H^+$, the energy loss factor(S.1 and depth resolution were estimated to he 42 eV/$\AA$ and 9.7 $\AA$, respectively. Also Si(100) surface was analyzed using the MEIS system. A random MElSspectrum was obtained from thc Si(100) covered with native oxide layers. At the double alignment condition, MElS spectrum showed ;i Si surface peak, a oxygen peak and a carbon peak.nd a carbon peak.

  • PDF

Development and Characterization of Multi-Segmented Tissue Equivalent Proportional Counter for Microdosimetry (마이크로 도시메트리용 다분할 조직등가비례계수기의 개발과 특성 평가)

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Moon, Myung Kook;Lim, Chang Hwy;Lee, Suhyun;Kim, Sunghwan
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • We designed, developed and characterized a multi-segmented tissue equivalent proportional (TEPC) counter for microdosimetry. The energy resolution of the multi-segmented TEPC was about 12% for $^{241}Am$ 5.45 MeV alpha particles. The resolution was better than 33% for a single un-segmented TEPC. A compact and low power consumption TEPC could be made by using digital pulse processor (DPP). We also successfully calibrated the TEPC by using $^{252}Cf$ standard neutron source in Korea Research Institute of Standards and Science (KRISS). According to the results, the TEPC is useful for several application of radiation monitoring such as a neutron monitor, air crew monitor and space dosimeter.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

A study on DR image restoration using dual sensor (이중센서를 이용한 DR 영상 개선에 관한 연구)

  • 백승권;이태수;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.725-728
    • /
    • 1988
  • Image restoration technique using dual sensor is presented in this paper. Digital Radiography image (1024xlO24) is obtained by conventional resolution sensor. We also obtain local DR image data by high resolution sensor. Two dimensional maximum entropy power spectrum estimation (2-D ME PSE) is applied to low resolution image and high resolution image for the purpose of the power spectrum estimation of each image. A class of linear algebraic restoration filter, parametric projection filter (PPF), is derived from the power spectrums of each image. It is shown that the noise energy may be considerably reduced through the PPF.

  • PDF

Influence of Topography Resolution on Atmospheric Flow Simulation (대기유동장 수치모의 시 지형해상도의 영향)

  • Woo, Sang-Woo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.455-457
    • /
    • 2009
  • The purposes of this study are to consider the influence of topography resolution on atmospheric flow simulation and to suggest a method of atmospheric flow simulation using a low-resolution DEM. Simulations using a low-resolution DEM has more critical error at near surface than simulations using high-resolution DEM because it is ignored the small curve topography of high-resolution DEM. Therefore when we convert the height differences between low-resolution DEM and high-resolution DEM into the topography roughness, we can be able to reduce the error on atmospheric flow simulations.

  • PDF

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

Application of an Energy Sensitive CZT Detector to a DXA Type of Bone Densitometer

  • Yoon, Je-Woong;Lee, Hyung-Koo;Lee, Heung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.422-424
    • /
    • 2002
  • The accuracy of DXA(Dual Energy X-ray Absorptiometry) highly depends on the detection and separation capability of dual energy X-ray X-ray photons. In addition both of scan time and patient exposure are affected by detection efficiency. A CZT detector with a good energy resolution and high detection efficiency was evaluated for the application of bone densitometry. Its performance was compared to a photomultiplier tube with a NaI(T1) scintillator in terms of energy resolution, detection efficiency and the accuracy of bone mineral density measurement. The comparison study was performed with CZT detector and PM tube using DXA equipments(OSTEO Plus, OSTEO Prima, ISOL Technology). The energy spectrum was acquired using MCA(Multi-Channel Analyzer). The used X-ray energy ranged from 20keV to 86keV. The MCA result of the CZT detector showed a slightly sharper energy spectrum than that of NaI(T1). Detection efficiency of the CZT detector at 59.5keV was 1.4 times better. Remarkably the final results of bone mineral density measurements demonstrate only less than 1% difference. The CZT detector appears to have many benefits for the application of bone densitometry. Its excellent energy resolution can enhance the counting accuracy of dual energy X-ray spectrum. Furthermore its compactness in physical dimension and no cooling requirement will be additional benefits for a more compact and accurate bone densitometer.

  • PDF