• Title/Summary/Keyword: Energy Reduction Design

Search Result 798, Processing Time 0.023 seconds

Numerical study on the design of urea decomposition chamber in LP SCR system

  • Um, Hyung Sik;Kim, Daehee;Kim, Keon Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.307-313
    • /
    • 2019
  • In order to design efficient Urea Decomposition Chamber (UDC) for the Low Pressure (LP) Selective Catalytic Reduction (SCR) system, numerical simulations were conducted with respect to various design parameters. The design parameters examined in this simulation include the chamber diameter, inlet and outlet shape of chamber, and urea injection point. Reaction kinetics for the urea decomposition was proposed and validated with the experimental data in the range of $300{\sim}450^{\circ}C$. The effects of design parameters on the performance of UDC were evaluated by the calculated urea conversion and pressure drop. As a result, the local optimum design values were derived by the parametric study.

A negative stiffness inerter system (NSIS) for earthquake protection purposes

  • Zhao, Zhipeng;Chen, Qingjun;Zhang, Ruifu;Jiang, Yiyao;Pan, Chao
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.481-493
    • /
    • 2020
  • The negative stiffness spring and inerter are both characterized by the negative stiffness effect in the force-displacement relationship, potentially yielding an amplifying mechanism for dashpot deformation by being incorporated with a series tuning spring. However, resisting forces of the two mechanical elements are dominant in different frequency domains, thus leading to necessary complementarity in terms of vibration control and the amplifying benefit. Inspired by this, this study proposes a Negative Stiffness Inerter System (NSIS) as an earthquake protection system and developed analytical design formulae by fully utilizing its advantageous features. The NSIS is composed of a sub-configuration of a negative stiffness spring and an inerter in parallel, connected to a tuning spring in series. First, closed-form displacement responses are derived for the NSIS structure, and a stability analysis is conducted to limit the feasible domains of NSIS parameters. Then, the dual advantageous features of displacement reduction and the dashpot deformation amplification effect are revealed and clarified in a parametric analysis, stimulating the establishment of a displacement-based optimal design framework, correspondingly yielding the design formulae in analytical form. Finally, a series of examples are illustrated to validate the derived formulae. In this study, it is confirmed that the synergistic incorporation of the negative stiffness spring and the inerter has significant energy dissipation efficiency in a wide frequency band and an enhanced control effect in terms of the displacement and shear force responses. The developed displacement-based design strategy is suitable to utilize the dual benefits of the NSIS, which can be accurately implemented by the analytical design formulae to satisfy the target vibration control with increased energy dissipation efficiency.

Change of Main Body Temperature and Reduction of Energy Consumption in a 1 Tube 2 Chamber Bent Silkworm Type Dyeing Machine

  • Lee, Choon-Gil;Woo, Kyung-Sung
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.550-556
    • /
    • 2002
  • The changes of the main body temperature of a I tube 2 chamber bent silkworm type dyeing machine and the reduction of energy consumption of the dyeing machine by the energy saving design are reported. This dyeing machine was developed for the purpose of the energy saving and high efficiency. In this study, the changes of the main body temperature of the 1 tube 2 chamber bent silkworm type dyeing machine were studied experimentally. Especially the effect of the blower motor electric current and the main body pressure at various blower frequencies were studied experimentally. In the experimental data for the changes of main body temperature, it was shown that the main body temperature increased as the blower motor electric current and the main body pressure increased.

Development of Awning System using Light Shelf - Focusing on the light environment and lighting energy reduction performance improvement -

  • Jeong, Jinsoo;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.5-13
    • /
    • 2017
  • Purpose: Various studies have been performed to address the issue of increased energy use by buildings. In particular, research on complex envelopes that combines diverse envelope element techniques is currently in progress in the building sector. The present study aimed to develop an awning system using a light shelf, and to verify its validity through performance evaluation. Method: In the present study, a testbed was established for the performance evaluation of the awning system using a light shelf, and the uniformity ratio and lighting energy consumption were compared and analyzed relative to those with no awning and light shelf installation (Case 1), awning installation (Case 2), and light shelf installation (Case 3). Result: 1) In the present study, an awning system using a light shelf (Case 4) where an opening is made on the awning screen and natural light can be introduced through the light shelf located at the bottom was developed. 2) The optimum standard for Case 4 obtained through the performance evaluation was a 0.6m lighting length and a 2m extension length at a light shelf angle of $30^{\circ}$. 3) Case 4 with the optimum standard had a 5.5% lower uniformity ratio than Case 2, but had a higher uniformity ratio than Case 1 and Case 3. 4) Case 4 with the optimum standard showed 13.3%, 44.6%, and 0%~8.7% lighting energy reductions compared to Case 1, Case 2, and Case 3, respectively. 5) Based on the above results, Case 4 suggested in the present study was found to be effective for indoor light environment improvement and lighting energy reduction.

An Analysis of Energy Reduction Effects in Housing According to Green Roof (옥상녹화에 따른 공동주택 에너지 저감효과 분석 연구)

  • Kim, Ji-Hyeon;Son, Hyeong-Min;Kwon, Hyuck-Sam;Kim, Jong-Gon;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.299-305
    • /
    • 2016
  • This study aims to provide basic materials for expanding application of green roof afforestation by analyzing structures' energy consumption reduction effects according to green roof afforestation as a planning means to cope with climate change. As the subjects, recently completed apartment buildings and service facilities of apartment houses where green roof afforestation was applied were selected. green roof afforestation of Extensive Green Roof(soil depth: 20cm) and Semi-Intensive Green Roof(soil depth: 40cm) in construction types was applied and design builders were utilized in order to compare energy reduction amount according to the application of green roof afforestation. According to the analysis result, all the buildings had energy reduction effect when green roof afforestation was applied.

Conceptual Design Strategy of Renewable Energy Application for Building Certification and Mandatory System (신재생에너지설비 건물설치 의무화 및 인증제를 고려한 용량설계 방안)

  • Lee, Kyoung-Ho;Lee, Dong-Won;Kown, Hyeok-Min;Lee, Chang-Jun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.99-104
    • /
    • 2011
  • This paper describes a design strategy at conceptual design stage using RETScreen software tool for building application of renewable energy resources. Currently, government and public buildings are required to adopt renewable energy systems with a minimum requirement for the amount of renewable energy supply. Meanwhile, there is a certificate program for private office buildings to enhance propagation of renewable energy systems. When considering application of renewable energy systems to a building, it is worthwhile developing a method to determine optimal design sizes of renewable energy systems. In the paper, a design strategy is introduced with a couple of case studies to determine optimal capacities of each renewable energy system in a building and suggest to use the method to evaluate the system for the building certificate program and the mandatory renewable target program. Objective functions considered in the study are initial system cost and reduction of CO2 emissions from the system. In the optimization study, it is assumed that solar thermal collectors are installed to satisfy solar fraction of 60%. Other renewable energy systems such as ground-source heat pump, solar PV and non-renewable systems such as electric chiller and gas-fired boiler are sized using an optimal sizing method with RETScreen suggested the authors previously.

  • PDF

Analysis of Techniques for Carbon Reduction in Residential Construction (주거건축에서의 탄소저감을 위한 기법 분석)

  • Kim, Minsoo;Lee, Taegoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In order to achieve carbon neutrality in the architectural field by 2050, this study analyzed the energy impact proportional to CO2 emissions of each technique, such as design methods, the properties of building structures, prefabrication methods, passive houses, and active facilities. In addition, the results were presented quantitatively in terms of carbon reduction, and corresponding housing cases were analyzed. The research method is limited to residential buildings at the Passive House energy level, and carbon reduction techniques and elements in architecture are examined through various literature and materials, and empirical cases are analyzed to determine the specific possibility of realizing carbon reduction in architecture. We want to secure it. Based on these analysis results, it was possible to suggest that it is possible to explore various approaches to carbon reduction in future residential construction. By combining the most efficient techniques according to the energy reduction level or goal setting of the building in question, we expect the possibility of achieving the goal of carbon reduction in the residential sector more realistically.

Design of the Impact Energy Absorbing Members and Evaluation of the Crashworthiness for Aluminum Intensive Vehicle (알루미늄 초경량 차체의 충격 흡수부재 설계 및 충돌 안전도 평가)

  • Kim, Heon-Young;Kim, Jin-Kook;Heo, Seung-Jin;Kang, Hyuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.216-233
    • /
    • 2002
  • Due to the environmental problems of fuel consumption and vehicle emission, etc., automotive makers are trying to reduce the weight of vehicles. The most effective way to reduce a vehicle weight is to use lighter materials, such as aluminum and plastics. Aluminum Intensive Vehicle(AIV) has many advantages in the aspects of weight reduction, body stiffness and model change. So, most of automotive manufacturers are attempting to develop AIV using Aluminum Space Frame(ASF). The weight of AIV can be generally reduced to about 30% than that of conventional steel vehicle without the loss of impact energy absorbing capability. And the body stiffness of AIV is higher than that of conventional steel monocoque body. In this study, Aluminum Intensive Vehicle is developed and analyzed on the basis of steel monocoque body. The energy absorbing characteristics of aluminum extrusion components are investigated from the test and simulation results. The crush and crash characteristics of AIV based on the FMVSS 208 regulations are evaluated in comparison with steel monocoque. Using these results, the design concepts of the effective energy absorbing members and the design guide line to improve crashworthiness for AIV are suggested.

On the Trade-Off between Throughput Maximization and Energy Consumption Minimization in IEEE 802.11 WLANs

  • Serrano, Pablo;Hollick, Matthias;Banchs, Albert
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.150-157
    • /
    • 2010
  • Understanding and optimizing the energy consumption of wireless devices is critical to maximize the network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work, we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to optimize it. We further analyze the impact of the energy configuration of the stations on the throughput performance, and we discuss under which circumstances throughput and energy efficiency can be both jointly maximized and where they constitute different challenges. Our findings are that, although an energy-optimized configuration typically yields gains in terms of throughput as compared against the default configuration, it comes with a reduction in performance as compared against the maximum-bandwidth configuration, a reduction that depends on the energy parameters of the wireless interface.