• Title/Summary/Keyword: Energy Plant

Search Result 3,857, Processing Time 0.043 seconds

Study on Energy Independence Plan for Sewage Treatment Plant (하수처리시설의 에너지 자립화 방안 연구)

  • Kim, Young-Jun;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • The objectives of this study are to analyze the energy independence plan and to propose a suitable sewage treatment plant in Korea. The total amount of electricity consumption for public sewage treatment plant was estimated as 1,812 GWh in 2007. It was estimated that total 16 sewage treatment plants with renewable energy systems produced electricity of 15 GWh per year, which could replace 0.8% of total electricity used for sewage treatment. It was found that domestic sewage treatment plants with power generation plants by digestion gas were installed in 7 places and produced electricity of 13 GWh per year. It was also found that the power generation plants by digestion gas were the most cost-effective for sewage treatment plant out of the renewable energy systems based on the benefit-cost analysis.

Study on Pertinence for Environmental Energy Complex Town Construction (환경에너지 종합타운 조성 타당성에 관한 연구)

  • Kim, Young-Jun;Lee, Jong-Yeon;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.164-171
    • /
    • 2011
  • The objectives of this study are to propose a suitable treatment facility for waste energy recovery after analyzing the waste generation and disposal situation in Jejudo, to establish the plan to install the solar photovoltaics and wind power plant considering the site conditions and finally to establish the environmental energy town plan in conjunction with the existing facilities. The food waste biogas plant is selected as the treatment capacity of 200 ton/day. It is estimated that the biogas plant will produce the electricity of 7,594 MWh per year, which will reduce the greenhouse gas of 4,177 $tCO_2$ per year. The solar photovoltaics and wind power plant will produce the electricity of 13,410 MWh per year, which will reduce the greenhouse gas of 7,375 $tCO_2$ per year. Environmental energy town will give us the reduction of operating cost by centralized treatment of residues and byproducts, and by efficient utilization of produced energy.

Development of Energy Consumption Estimation Model Using Multiple Regression Analysis (다중회귀분석을 활용한 하수처리시설 에너지 소비량 예측모델 개발)

  • Shin, Won-Jae;Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1443-1450
    • /
    • 2015
  • Wastewater treatment plant(WWTP) has been recognized as a high energy consuming plant. Usually many WWTPs has been operated in the excessive operation conditions in order to maintain stable wastewater treatment. The energy required at WWTPs consists of various subparts such as pumping, aeration, and office maintenance. For management of energy comes from process operation, it can be useful to operators to provide some information about energy variations according to the adjustment of operational variables. In this study, multiple regression analysis was used to establish an energy estimation model. The independent variables for estimation energy were selected among operational variables. The $R^2$ value in the regression analysis appeared 0.68, and performance of the electric power prediction model had less than ${\pm}5%$ error.

Mitigation of high energy arcing faults in nuclear power plant medium voltage switchgear

  • Chang, Choong-koo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.317-324
    • /
    • 2019
  • A high energy arcing fault event occurred in the medium-voltage (13.8 kV and 4.16 kV) metalclad switchgears in a nuclear power plant not only affecting switchgear but also connected equipment due to the arc energy. The high energy arcing fault also causes a fire that influences the safety function of the unit. Therefore, from the safety point of view, it is necessary to evaluate the influences of high energy arcing fault events on the safety functions of nuclear power plants. The purpose of this paper is to elaborate the characteristics of high energy arcing faults and propose a high energy arcing fault mitigation scheme for medium voltage networks in nuclear power plants.

Promoting Policy to Involve Plant EPC Companies for Package Deal to Acquisite Overseas Energy Resources (패키지 딜 방식의 해외 에너지자원 획득에 관한 플랜트EPC기업참여 촉진방안연구)

  • Kim, Young-Kyun;Moon, Sun-Ae;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.2
    • /
    • pp.50-55
    • /
    • 2009
  • Promoting policy to involve plant EPC companies for package deal has been studied to acquire overseas energy resources. The effectiveness of the package deal with the plant EPC companies has not been successful because the participation of the plant EPC companies is very rare. It is difficult for the plant EPC companies to join the package deal due to the lack of the fully responsible organization to support the plant EPC companies participating in a package deal. The followings are suggested as the ways to promote the participation of the plant EPC companies for package deal in this study; 1) financial support of the government for plant EPC companies 2) political support of the government for plant EPC companies 3) specialization of the advanced countries for public-private cooperation.

  • PDF

Design and Performance Prediction of Small Hydropower Plant Using Treated Effluent in Wastewater Treatment Plant (하수처리수를 이용한 소수력발전소 설계 및 성능예측)

  • Lee, Chul-Hyung;Park, Wan-Soon;Kim, Won-Kyoung;Kim, Jeong-Yeon;Chae, Kyu-Jung
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.78-83
    • /
    • 2013
  • A methodology to predict the output performance of small hydro power plant using treated effluent in waste water treatment plant has been studied. Existing waste water treatment plant located in Kyunggi-Do were selected and the output performance characteristics for these plants were analyzed. .Based on the models developed in this study, the hydrologic performance characteristics for SHP sites have been analyzed. The results show that the flow duration characteristics of small hydropower plant for waste water treatment plant have quite differences compared with small hydropower plant for the river. As a result, it was found that the developed model in this study can be used to analyze the output characteristics for small hydro power in waste water treatment plant. Additionally, primary design specifications such as design flowrate, capacity, operational rate and annual electricity production were estimated and discussed. It was found that the models developed in this study can be used to decide the design performance of small hydropower plant for waste water treatment plant effectively.

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System (100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구)

  • Moon, Ji-Hong;Jo, Sung-Ho;Mun, Tae-Young;Park, Sung-Jin;Kim, Jae-Young;Nguyen, Hoang Khoi;Lee, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.400-407
    • /
    • 2019
  • Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as $SO_2$, NO and CO through a flue gas recirculation process. The newly developed $100kW_{th}$ pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of $SO_2$, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% $CO_2$.