• Title/Summary/Keyword: Energy Materials

Search Result 11,285, Processing Time 0.036 seconds

Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.109-112
    • /
    • 2003
  • The grain-boundary microcracking materials in the system $Al_2$TiO$_{5}$ -ZrTiO$_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$ K loin compared to 8.29$\times$10$^{6}$ K of pure ZrTiO$_4$and 0.68$\times$10$^{6}$ K of polycrystalline $Al_2$TiO$_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of $Al_2$TiO$_{5}$ , 9.70$\times$10$^{6}$ K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal a ies of the $Al_2$TiO$_{5}$ phase.

Characteristic Evaluation of Impact Absorption Materials for the Development of Fall Impact Protective Pants (낙상 보호 팬츠개발을 위한 충격흡수 소재특성 평가)

  • Park, Jung Hyun;Lee, Jin Suk;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.3
    • /
    • pp.495-505
    • /
    • 2016
  • This study explores and selects an appropriate material that considers light and soft physical properties as well as activity for impact absorption pads that can be used to develop practical impact protective clothes worn during daily life by the elderly to reduce the impact of falls. Physical properties, impact absorption performance, and compression characteristics were evaluated on 5 types of foam, 2 types of 3D spacer fabric, and 3 types of polymer gel to select a material appropriate for the pad to be inserted into impact protective clothes. The evaluation of the physical properties showed that 3D spacer fabrics had lower density compared to other materials and polymer gels had the highest density. The elongation percentage was higher in foams than 3D spacer fabrics and EPDM foam had the highest elongation percentage. The impact absorption performance of honeycomb polymer gel was better than foams and 3D spacer fabrics. As a result of looking into compression energy and compression characteristics of materials, 'CR foam A' was found to absorb the largest amount of compression energy, 24.1%, among foams and polymer gels. A high energy absorption rate of 50.0% (or above) was indicated by 3D spacer fabrics; however, foams and polymer gels showed a progressive deformation of energy compression / recovery curve with 3D spacer fabrics that showed drastic deformation. Based on characteristics of materials, 'CR foam C' and EPDM with relatively high absorption performance can be used as protective pad materials among foams. Among polymer gels, 2 open-type polymer gels that have relatively low impact protective performance but a relatively lighter weight on human body (compared to closed-type) are considered appropriate protective pad materials.

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Erratum to: "Grain Boundary Microcracking in ZrTiO4-Al2TiO5 Ceramics Induced by Thermal Expansion Anisotropy"

  • Kim, Ik-Jin;Kim, Hyung-Chul;Lee, Kee-Sung;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.317-321
    • /
    • 2003
  • The grain-boundary microcracking materials in the system A1$_2$Ti $O_{5}$ -ZrTi $O_4$(ZAT) is influenced by the thermal expansion anisotropy. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3~1.3$\times$10$^{-6}$K compared to 8.29$\times$10$^{-6}$K of pure ZrTi $O_4$and 0.68$\times$10$^{-6}$K of polycrystalline A1$_2$Ti $O_{5}$ , respectively, compared with the theoretical thermal expansion coefficient for a single crystal of A1$_2$Ti $O_{5}$ , 9.70$\times$10$^{-6}$K. The low thermal expansion and microcraking temperature are apparently due to a combination of thermal contraction and expansion caused by the large thermal expansion anisotropy of the crystal axes of the A1$_2$Ti $O_{5}$ phase.

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

Characteristics of nickel cobalt oxide (NiCo2O4) nanosheet electrodes prepared by hydrothermal synthesis and heat treatment (수열합성법으로 제조된 니켈코발트산화물(NiCo2O4) 나노시트 전극의 특성)

  • Lee, Seokhee;Cha, Hyunjin;Lee, Sangwoon;Kim, Juna;Park, Jeonghwan;Hwang, Donghyun;Son, Young Guk
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • In a carbon-zero social atmospher, research is underway to reduce the use of fossil fuels. Interest in cleaner energy sources and their storage system is growing, and among them, research on effective energy storage is being actively conducted. Energy storage system(ESS) can be divided into secondary batteries, fuel cells, and capacitors, and the superiority of energy density of secondary batteries has a dominent influence on the ESS market. However, as problems with secondary batteries, charge/discharge speed, safety, and deterioration of electrodes are being highlighted. In this study, an electrode for supercapacitor with superior charge/discharge speed and specific capacitance is manufactured. The manufactured spinel nickel cobalt electrodes had specific capacitances of 1018.8 F/g, 690.8 F/g, and 475.1 F/g at 1 A/g in 1 M KOH electrolyte, and shows a performance retention rate of 77.48%, 63.30%, and 58.16% after 2000cycles at 7 A/g.

Application to Piezoelectric and Triboelectric Generators of Spongy Structured BaTiO3 Prepared by Sputtering (Sputtering에 의해 제조된 해면 구조 BaTiO3의 압전 및 마찰전기 발전기에의 응용)

  • Seon-A Kim;Sang-Shik Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.34-43
    • /
    • 2024
  • New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 ㎂ at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 ㎂, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.

Basic Design of 36 MTD Class Natural Gas BOG Re-Liquefaction System (36 MTD급 천연가스 BOG 재액화 플랜트 기본설계)

  • Ko, Junseok;Park, Seong-Je;Kim, Ki-Duck;Hong, Yong-Ju;Koh, Deuk-Yong;Kim, Hyobong;Yeom, Hankil
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.99-105
    • /
    • 2013
  • In this paper, we carried out the basic design of 36 MTD natural gas BOG re-liquefaction system to recover the generated natural gas during performance test of LNG pump and natural gas compressor. The re-liquefaction process of natural gas is designed to have 1500 kg/h of liquefaction rate with reverse Brayton refrigeration cycle. With the designed process, the variation of liquefaction rate is calculated for various inlet conditions of feed gas. From results, the liquefaction rate is more sensitive for inlet temperature than gas composition. The specifications of equipments such as gas blower, natural gas compressor, cryogenic heat exchanger and nitrogen compander are determined on the basis of the designed process. The requirement of power consumption and cooling water are also determined through the basic design.

Optimizing Graphene Growth on the Electrolytic Copper Foils by Controlling Surface Condition and Annealing Procedure (전해구리막의 표면 조건과 어닐링 과정을 통한 그래핀 성장 최적화)

  • Woo Jin Lee;Ha Eun Go;Tae Rim Koo;Jae Sung Lee;Joon Woo Lee;Soun Gi Hong;Sang-Ho Kim
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.192-200
    • /
    • 2023
  • Graphene, a two-dimensional material, has shown great potential in a variety of applications including microelectronics, optoelectronics, and graphene-based batteries due to its excellent electronic conductivity. However, the production of large-area, high-quality graphene remains a challenge. In this study, we investigated graphene growth on electrolytic copper foil using thermochemical vapor deposition (TCVD) to achieve a similar level of quality to the cold-rolled copper substrate at a lower cost. The combined effects of pre-annealing time, graphenized temperature, and partial pressure of hydrogen on graphene coverage and domain size were analyzed and correlated with the roughness and crystallographic texture of the copper substrate. Our results show that controlling the crystallographic texture of copper substrates through annealing is an effective way to improve graphene growth properties, which will potentially lead to more efficient and cost-effective graphene production. At a hydrogen partial pressure that is disadvantageous in graphene growth, electrolytic copper had an average size of 8.039 ㎛2, whereas rolled copper had a size of 19.092 ㎛2, which was a large difference of 42.1% compared to rolled copper. However, at the proper hydrogen partial pressure, electrolytic copper had an average size of 30.279 ㎛2 and rolled copper had a size of 32.378 ㎛2, showing a much smaller difference of 93.5% than before. This observation suggests this potentially leads the way for more efficient and cost-effective graphene production.

Material Discrimination Using X-Ray and Neutron

  • Jaehyun Lee;Jinhyung Park;Jae Yeon Park;Moonsik Chae;Jungho Mun;Jong Hyun Jung
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.167-174
    • /
    • 2023
  • Background: A nondestructive test is commonly used to inspect the surface defects and internal structure of an object without any physical damage. X-rays generated from an electron accelerator or a tube are one of the methods used for nondestructive testing. The high penetration of X-rays through materials with low atomic numbers makes it difficult to discriminate between these materials using X-ray imaging. The interaction characteristics of neutrons with materials can supplement the limitations of X-ray imaging in material discrimination. Materials and Methods: The radiation image acquisition process for air-cargo security inspection equipment using X-rays and neutrons was simulated using a GEometry ANd Tracking (Geant4) simulation toolkit. Radiation images of phantoms composed of 13 materials were obtained, and the R-value, representing the attenuation ratio of neutrons and gamma rays in a material, was calculated from these images. Results and Discussion: The R-values were calculated from the simulated X-ray and neutron images for each phantom and compared with those obtained in the experiments. The R-values obtained from the experiments were higher than those obtained from the simulations. The difference can be due to the following two causes. The first reason is that there are various facilities or equipment in the experimental environment that scatter neutrons, unlike the simulation. The other is the difference in the neutron signal processing. In the simulation, the neutron signal is the sum of the number of neutrons entering the detector. However, in the experiment, the neutron signal was obtained by superimposing the intensities of the neutron signals. Neutron detectors also detect gamma rays, and the neutron signal cannot be clearly distinguished in the process of separating the two types of radiation. Despite these differences, the two results showed similar trends and the viability of using simulation-based radiation images, particularly in the field of security screening. With further research, the simulation-based radiation images can replace ones from experiments and be used in the related fields. Conclusion: The Korea Atomic Energy Research Institute has developed air-cargo security inspection equipment using neutrons and X-rays. Using this equipment, radiation images and R-values for various materials were obtained. The equipment was reconstructed, and the R-values were obtained for 13 materials using the Geant4 simulation toolkit. The R-values calculated by experiment and simulation show similar trends. Therefore, we confirmed the feasibility of using the simulation-based radiation image.