• Title/Summary/Keyword: Energy Management System

Search Result 2,234, Processing Time 0.028 seconds

Construction Method of Zero Discharge System for Environmental Energy Complex in Landfill (매립지내 환경에너지단지의 무방류 시스템 구축방안)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.581-590
    • /
    • 2013
  • A research was performed for zero discharge system of waste water which is produced from energy recovery process of waste and biomass. Leachate and all kinds of waste water should be separated and integrated into three categories in addition to converting existing leachate treatment facility into waste water treatment facility as well as introducing a management system of reverse osmosis membrane facility and bioreactor landfill. Following these conditions to better water treatment process, it was likely to produce over 3,000 tons of low-grade recycling water and 2,000 tons of high-grade recycling water per day when zero discharge system of waste water is applied starting from 2016. Economical efficiency was also surveyed in total treatment fee. Present system costs 18,129 million won per year, and suggested zero discharge system would cost 15,789 million won per year.

A Study on Analysis of Domestic Energy Consumption and Reduction Greenhouse Gas in Building (에너지 소비분석과 건축분야에서의 온실가스 저감 방안)

  • Park, Jong-Il;Park, Ryul
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This study aims to analysis domestic energy consumption in Korea and reduction greenhouse gas by building mechanical system. At this point be tormented the energy depletion and climate change of earth are big problems on the eatrh. In this paper we will find out best methods to reduction greenhouse gas and energy consumption by practical building mechanical system. Enlargement of greenhome and building adopt, greenhouse gas exhaust reduction in building, publication of energy consumption rate, publish building energy management manual, etc.

Perception Analysis of Related Field for Energy Evaluator Qualification System (에너지평가사 자격제도에 대한 관련 분야의 인식도 분석)

  • Yang, Jin-Kook;Shin, Seung-Jun;Lee, Min-Hyeon;Jo, Hyeon-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.113-114
    • /
    • 2015
  • Throughout the world, energy sector is increasing in importance. Reflecting this situation, the government has introduced an energy efficiency rating system for buildings. In particular, the government is planning to introduce the energy evaluator examination system. In this study will want to analyze the relevant sectoral perception for the energy evaluator through expert interviews and surveys. The research results are expected to contribute to the rational management of the energy evaluator system.

  • PDF

Experimental Study on the Mutual Influence of Thermal Management System for Hydrogen Fuel Cell Vehicle (수소연료전지 자동차 열관리 시스템의 상호 영향도 분석을 위한 실험적 연구)

  • Lee, Moo-Yeon;Won, Jong-Phil;Cho, Choong-Won;Lee, Ho-Seong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.852-858
    • /
    • 2011
  • This paper is aiming to estimate the mutual influence of the stack cooling performances with the operation modes of the thermal management system for the hydrogen fuel cell vehicles. The heat capacity of the thermal management system was measured by varying the operating modes such as stack cooling heat exchanger only (Mode 1), stack cooling and electric devices cooling heat exchangers (Mode 2), and stack cooling and electric devices cooling heat exchangers with an operation of the condenser (Mode 3).As the results, Performance of the thermal management system (TMS) at Mode 3 decreased up to 34.0%, compared with the result of the Mode 1. In addition, in order to optimize the performance of TMS, the entropy change of stack cooling heat exchanger using irreversibility analysis technique was analyzed with the relationship between entropy generation and entering air velocity of the thermal management system.

A Study on the BMS(Battery Management System) of Active Cell Balancing System using Lithium Ion Battery for Efficient Energy Management (효율적인 에너지 관리를 위해 리튬이온 배터리를 적용한 능동 셀 벨런싱 시스템 BMS(Battery Management System)에 관한 연구)

  • Kim, Jae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.388-389
    • /
    • 2017
  • 본 논문에서는 효율적인 에너지 관리를 위해 리튬이온 배터리를 적용 능동 셀 밸런싱 시스템 BMS에 대해 제안하였다. 제안된 방법은 다수의 셀과 하나의 커패시터로 구성된 SSC(Single Switched Capacitor) 방식에서 사용되는 커패시터를 리튬이온 배터리로 변경하여 적용한 것이다. SSC 방식은 커패시터의 방향성으로 인하여 홀수 번째와 짝수 번째의 배터리에 대해 별도의 스위치를 설치하여야 하며 조작이 복잡하다는 단점을 가지고 있었다. 이러한 단점을 보완하여 커패시터를 리튬이온 배터리로 대체하여 셀의 순서에 상관없이 적용이 가능한 셀 밸런싱 방법을 제안하였다. 제안된 방법의 효율성은 BMS를 구현하여 실험 하였다. 실험 결과 셀 밸런싱이 기존의 SSC 방식보다 개선되어 효율성이 입증되었다.

  • PDF

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

Development of an Energy Management Algorithm for Smart Energy House (스마트에너지하우스 구현을 위한 에너지 수요관리 알고리즘의 개발)

  • Jeon, Jeong-Pyo;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.515-524
    • /
    • 2010
  • Recently, many actions are taking to accelerate progress toward social consensus and implementation of Smart Grid. Smart Grid refers to a evolution of the electricity supply infrastructure that monitors, protects, and intelligently optimize the operation of the interconnected elements including various type of generators, power grid, building/home automation system and end-use consumers. The most distinguished element will be Advanced Metering Infrastructure (AMI) that will be installed to every end-use consumer's home or building and optimize the energy consumption of the end-use consumer. The key function of AMI is energy management capability that coordinates and optimally controls the various loads according to the operating condition and environments. In this study, we figure out the basic function of AMI in Smart Energy House that can be defined as a model house implementing in Smart Grid. This paper proposes the energy management algorithm that will be implemented in AMI at Smart Energy House. The paper also show how energy saving in Smart Energy House can be achieved applying the proposed algorithm to an actual house model that has mainly lighting, air-conditioning, TV loads.

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

Development of Technology for Network Construction using Wide Area Energy (광역에너지이용 네트워크 구축 기술개발)

  • Kim, Lae-Hyun;Chang, Won-Seok;Hong, Jae-Jun
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.125-138
    • /
    • 2008
  • In order to diversify energy source and to utilize it effectively, it requires to construct an integrated energy management system in a wide area. This research paper explores the core technology of network construction using wide area energy and applies the technology to the field. In specific, it examines the business model by developing l) construction technology of optimum integrated system for thermal supply on wide area network related IT technology, 2) technology of unutilized energy as heat pump using exhaust gas latent heat, and 3) thermal transportation and storage technology using various sources, and by evaluating the applicability and marketability of the model in the field.