• Title/Summary/Keyword: Energy Element

Search Result 3,393, Processing Time 0.03 seconds

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

A Study on the Application of Solar Energy System in Apartment Complex (공동주택단지에서의 태양에너지 시스템 적용에 관한 연구)

  • Jung, Sun-Mi;Chung, Min-Hee;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-48
    • /
    • 2009
  • In this study, through case studies, solar energy systems were coordinated with architectural plan elements and the others in apartment complex, and the energy performance was evaluated quantitatively through computer simulation PVSYST and RETScreen. As a results, in plan process of the application of solar energy systems in apartment complex, solar energy system should be considered as not only energy reducing technical element but also part of architectural plan element. And it must be considered with architectural plan elements, composition methods, energy storage methods, technical elements from the early basic plan stage. Photovoltaic system was installed on the wall facing the south and rooftop. The energy ratio of electric load was shown to be 5.5%. The result showed 7.2% when adding it to shading device additionally, and 6.4% in case of putting extra translucent module on windows. Active solar collecting system was applied on roof with the angle of 45. Maximum number of solar collector was 10 in a row, and the total solar collecting area was $915.00m^2$. The energy ratio of domestic water heating load by active solar hot water system is shown to be 11.4%.

  • PDF

Suggestion of the Characteristics of Element Technology and the Standard Model through the Comparison of Domestic Zero-energy Houses (국내 에너지제로하우스 비교를 통한 요소기술 특성 및 표준 모델 제시에 관한 연구)

  • Lee, Chung-Kook;Lee, Jeong-Cheol;Kim, Sang-Su;Suh, Seung-Jik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Five zero energy house models developed in Korea for the purpose of the energy performance were compared and analyzed in the study. The standard passive house model applying common technology and efficient energy performance elements was proposed. Standard passive house 5 models have been developed commonly aiming at 100% energy saving, applying high-performance and high-efficiency exterior thermal insulation, using 3 low-e coated window system, and targeting average 0.65 ACH to enhance privacy. Energy recovery ventilators and dry and cold radiant heating floor has been partially applied. Eco-design techniques such as the awning device, heat insulating door, using natural light have been used. Solar and geothermal systems as the application of renewable energy technologies have been commonly applied. And fuel cells were applied to a partial model. The standard model based on common technical elements and average performance of each element and obtained from five model analysis has been proposed in the study.

A spline finite element method on mapping

  • Ding, Hanshan;Shao, Rongguang;Ding, Dajun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.415-424
    • /
    • 1996
  • This paper presents a newly suggested calculation method in which an arbitrary quadrilateral element with curved sides is transformed to a normal rectangular one by mapping of coordinates, then the two-dimensional spline is adopted to approach the displacement function of this element. Finally the solution can be obtained by the least-energy principle. Thereby, the application field of Spline Finite Element Method will be extended.

Reduced Minimization Theory in Skew Beam Element (공간곡선보요소에서의 감차최소화 이론)

  • Moon, Won-joo;Kim, Yong-woo;Min, Oak-key;Lee, Kang-won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3792-3803
    • /
    • 1996
  • Since the skew beam element has two curvatures which are a curvature and a torsion, spatial behavior of curved beam which cannot be included in one plane can be anlayzed by emploting the skew beam element. The $C^{0}$-continuous skew beam element shows the stiffness locking phenomenon when full integration is employed. The locking phenomenpn is characterized by two typical phenomena ; one is the much smaller displacement thant the exact one and theother is the undelation phenomenon is stress distribution. In this paper, we examine how unmatched coefficient in the constrained energy brings about the locking by Reduced Minimization theory. We perform the numerical ones. These comparisons show that uniformly full integration(UFI), which employs full integration for the constrained energy, entails the locking phenomenon. But the use of uniformly reduced integration(URI) of selectively reduced integration(SRI), which employs reduced integration for constrained energy, does not produce the significant errors of displacements of the undulation phenomenon in stress distribution since they do not entails the locking, Additionally, the error due to the approximated parameters for describing the geometry of skew beam is examined.d.

Design Space Exploration of Many-Core Processors for Ultrasonic Image Processing at Different Resolutions (다양한 해상도의 초음파 영상처리를 위한 매니코어 프로세서의 디자인 공간 탐색)

  • Kang, Sung-Mo;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.121-128
    • /
    • 2012
  • This paper explores the optimal processing element (PE) configuration for ultrasonic image processing at different resolutions ($256{\times}256$, $768{\times}1,024$, and $1,024{\times}1,280$). To determine the optimal PE configuration, this paper evaluates the impacts of a data-per-processing element (DPE) ratio that is defined as the amount of image data directly mapped to each PE on system performance and both energy and area efficiencies using architectural and workload simulations. This paper illustrates the correlation between DPE ratio and PE architecture for a target implementation in 130nm technology. To identify the most efficient PE structure, seven different PE configurations were simulated for ultrasonic image processing. Experimental results indicate that the highest energy efficiencies were achieved at PEs=1,024, 4,096, and 16,384 for ultrasonic images at $256{\times}256$, $768{\times}1,024$, $1,024{\times}1,280$ resolutions, respectively. Furthermore, the maximum area efficiencies were yielded at PEs=256 ($256{\times}256$ image) and 4,096 ($768{\times}1,024$ and $1,024{\times}1,280$ images), respectively.

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.