• Title/Summary/Keyword: Energy Dispersive Spectrometry

Search Result 126, Processing Time 0.025 seconds

Characterization of Two-Dimensional Transition Metal Dichalcogenides in the Scanning Electron Microscope Using Energy Dispersive X-ray Spectrometry, Electron Backscatter Diffraction, and Atomic Force Microscopy

  • Lang, Christian;Hiscock, Matthew;Larsen, Kim;Moffat, Jonathan;Sundaram, Ravi
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.131-134
    • /
    • 2015
  • Here we show how by processing energy dispersive X-ray spectrometry (EDS) data obtained using highly sensitive, new generation EDS detectors in the AZtec LayerProbe software we can obtain data of sufficiently high quality to non-destructively measure the number of layers in two-dimensional (2D) $MoS_2$ and $MoS_2/WSe_2$ and thereby enable the characterization of working devices based on 2D materials. We compare the thickness measurements with EDS to results from atomic force microscopy measurements. We also show how we can use electron backscatter diffraction (EBSD) to address fabrication challenges of 2D materials. Results from EBSD analysis of individual flakes of exfoliated $MoS_2$ obtained using the Nordlys Nano detector are shown to aid a better understanding of the exfoliation process which is still widely used to produce 2D materials for research purposes.

Isotopic Analysis of NUSIMEP-6 Uranium Particles using SEM-TIMS

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.4 no.3
    • /
    • pp.51-54
    • /
    • 2013
  • Isotopic analysis using thermal ionization mass spectrometry coupled with scanning electron microscopy (SEM-TIMS) was performed to determine the isotopic ratios of uranium contained in micro-particles in the 6th Nuclear Signatures Interlaboratory Measurement Evaluation Programme (NUSIMEP-6) sample. Elemental analysis by energy dispersive X-ray spectroscopy (EDS) was conducted on uranium-bearing mirco-particles, which were transferred to rhenium filaments for TIMS loading using a micromanipulation system in a SEM. A multi-ion-counter system was utilized to detect the ion signals of the four isotopes of uranium simultaneously. The isotope ratios of uranium corrected by bracketing using a reference material showed excellent agreement with the certified values. The measurement accuracy for $n(^{234}U)/n(^{238}U)$ and (b) $n(^{235}U)/n(^{238}U)$ was 10% and 1%, respectively, which met the requirements for qalification for the NetWork of Analytical Laboratories (NWAL).

Microwave sintering of Fly Ash substituted body (석탄회가 첨가된 점토의 마이크로파를 이용한 소결)

  • 김석범;한정환;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.513-517
    • /
    • 1998
  • Fly ashes mixed with clay as 70:30 weight percent were sintered by microwave energy and a 2.45 Ghz kitchen model microwave oven was used. Samples were sintered at $1,150^{\circ}C$ and kept at that temperature up to 50 minutes by 10 minutes intervals. Microstructures were taken by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS) analysis of a raw fly ash was taken. X-ray diffraction analysis was done, and compressive strengths and apparent densities were measured. Pore sizes of the samples became smaller as time passed by, but compressive strengths and apparent densities did not change much. Numerical analysis on the microwave heated system was carried out in order to figure out heat transfer phenomena in the cavity.

  • PDF

Uranium Particle Identification with SEM-EDX for Isotopic Analysis by Secondary Ion Mass Spectrometry

  • Esaka, Fumitaka;Magara, Masaaki
    • Mass Spectrometry Letters
    • /
    • v.7 no.2
    • /
    • pp.41-44
    • /
    • 2016
  • Secondary ion mass spectrometry (SIMS) is a promising tool to measure isotope ratios of individual uranium particles in environmental samples for nuclear safeguards. However, the analysis requires prior identification of a small number of uranium particles that coexist with a large number of other particles without uranium. In the present study, this identification was performed by scanning electron microscopy - energy dispersive X-ray analysis with automated particle search mode. The analytical results for an environmental sample taken at a nuclear facility indicated that the observation of backscattered electron images with × 1000 magnification was appropriate to efficiently identify uranium particles. Lower magnification (less than × 500) made it difficult to detect smaller particles of approximately 1 μm diameter. After identification, each particle was manipulated and transferred for subsequent isotope ratio analysis by SIMS. Consequently, the isotope ratios of individual uranium particles were successfully determined without any molecular ion interference. It was demonstrated that the proposed technique provides a powerful tool to measure individual particles not only for nuclear safeguards but also for environmental sciences.

Chemical Constitution, Morphological Characteristics, and Biological Properties of ProRoot Mineral Trioxide Aggregate and Ortho Mineral Trioxide Aggregate

  • Kum, Kee Yeon;Yoo, Yeon Jee;Chang, Seok Woo
    • Journal of Korean Dental Science
    • /
    • v.6 no.2
    • /
    • pp.41-49
    • /
    • 2013
  • Purpose: This study sought to compare the elemental constitution, morphological characteristics, particle size distribution, biocompatibility, and mineralization potential of Ortho MTA (OMTA) and ProRoot MTA (PMTA). Materials and Methods: OMTA and PMTA were compared using energy-dispersive spectrometry, particle size analysis, and scanning electron microscopy. The biocompatibility and mineralization-related gene expression (osteonectin and osteopontin) of both MTAs were also compared using methylthiazol tetrazolium assay and reverse transcription-polymerization chain reaction analysis, respectively. The results were analyzed by Kruskal-Wallis test with Bonferroni correction. P-value of <0.05 was considered significant. Result: The morphology of OMTA powders was similar to that of PMTA. The constituent elements of both MTAs were calcium, silicon, and aluminum. The mean particle sizes of OMTA and PMTA were 4.60 and 3.34 mm, respectively. Both MTAs had equally favorable in vitro biocompatibility and affected the messenger RNA expression of osteonectin and osteopontin. Conclusion: Within the limitations of this study, OMTA could be a promising biomaterial in clinical endodontics.

Analysis of Chemical Constitutions of MTA and 3 Portland Cements (EDS (Energy Dispersive Spectrometry)를 이용한 Mineral Trioxide Aggregate와 3종의 포틀랜드 시멘트의 성분비교에 관한 연구)

  • Chang, Seok-Woo;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.79-84
    • /
    • 2007
  • Mineral Trioxide Aggregate(MTA) has been used in Endodontic treatment successfully for more than 10 years. But the high cost of MTA limits its use in endodontics in Korea. Recently many studies have been done to compare MTA and Portland cements. To investigate the chemical constitutions of MTA (Proroot MTA, Tulsa Dental), Gray Portland cement (Lafarge Halla cement), White Portland cement(Union corp), and fast setting cement (SSangyong cement), we performed SEM(scanning electron microscope)(S4700, Hitachi) examination and EDS(Energy dispersive spectrometry)(emax, Horiba) analysis. SEM examination and EDS analysis were committed to and performed in SNU DRI (Seoul National University Dental Research Institute). We found that particles of MTA were relatively round, uniform in size, and compactly packed compared to Portland cements. Chemical constitutions of MTA, GPC, WPC and FSC were similar. It was shown that MTA contains much BiO2 . MTA and WPC showed less heavy metals such as Fe and Mg compared to GPC and FSC. FSC showed remarkably high aluminum content.

Recovery of Copper from Spent Photovoltaic Ribbon in Solar Module (폐태양전지(廢太陽電池)용 솔라리본으로부터 구리회수(回收)에 관한 연구(硏究))

  • Lee, Jin-Seok;Jang, Bo-Yun;Kim, Joon-Soo;Ahn, Young-Soo;Kang, Gi-Hwan;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.22 no.5
    • /
    • pp.50-55
    • /
    • 2013
  • The recovery of copper from spent photovoltaic ribbon was conducted using thermal treatment method at the range of temperature of $300^{\circ}C$ to $600^{\circ}C$ under inert atmosphere. The coating layer consisted of lead of 68.99 wt.% and tin of 31.21 wt.% was melted down at elevated temperatures and was collected on the bottom of crucible. The chemical composition of copper ribbon after thermal treatment was analyzed by ICP-MS (Inductively coupled plasma mass spectrometry) and the purity of copper was found to be obtained up to about 96 wt.% regardless of temperatures. The cross-sectional area of the specimen was also examined by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray microscopy).

Application of Spectrochemical Analysis in the Study of Archaeological Textiles (복식유물의 연구에 있어서 분광화학분석의 활용)

  • 안춘순
    • Journal of the Korean Society of Costume
    • /
    • v.49
    • /
    • pp.49-63
    • /
    • 1999
  • This research utilized the Energy Dispersive X-ray Spectroscopy(EDS) and the Inductively Coupled Plasma Mass Spectrometry in the analysis of chemical elements present among the textiles exhumed from Kupori Hwasung-kun Kyunggi-do. The two research objectives were: first to examine the elements present and their percent presence in Kupori samples: second to investigate whether the elements are part of mordant substances which could have been used when dyeing the KUpori textiles in the past. To meet such research purposes standard silk fabric was dyed with Sophorajaponica using alum and iron mordants. For alum mordant unpurified general alum and potassium aluminum sulfate(AlK(SO4)2). iron sulfate(FeSO4·7H2O) were used, From the results of EDS and ICP-Mass analysis the following conclusions were drawn. 1 According to the EDS analysis 9 elements Ca, S, Al, Si, K, Fe, P, Mg and Na were detected. 2. ICP-Mass result of the mordant chemicas showed high amount of A, Al and k present in alum mordants and S and Fe present in iron mordants. 3. Comparison of the ICP-Mass results of the mordant chemicals and those of the standard dyed samples suggested that the amount presence of Al and Fe is a strong indication of the usage of alum and iron mordants respecticely in an unknown dyed textile. 4, In the washed Kupori textiles Fe showed a relatively higher rate of presence in the samples Therefore it can be conjectured that those Kupori textiles were dyed with iron mordant based on the result of the above number 3. 5. It is probable that the other elements detected from the Kupori samples were incorporated into the textiles as part of the soil debris produced from the degradation of the dead within the coffin or the earth debris. They can also be part of the inorganic compounds inherent in the silk textiles themselves before dyed. 6. Among the elements it is likely that Ca which showed a high degree of presence among the unwashed samples was part of the inorganic compound inferent in the silk textiles.

  • PDF

Visualization of Artificially Deposited Submicron-sized Aerosol Particles on the Surfaces of Leaves and Needles in Trees

  • Yamane, Kenichi;Nakaba, Satoshi;Yamaguchi, Masahiro;Kuroda, Katsushi;Sano, Yuzou;Lenggoro, I. Wuled;Izuta, Takeshi;Funada, Ryo
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.275-280
    • /
    • 2012
  • To understand the effect of aerosols on the growth and physiological conditions of trees in forests, it is important to know the state of aerosols that are deposited on the surface of the leaves or needles. In this study, we developed methods of visualization of submicron-sized aerosols that were artificially deposited from the gas-phase or liquid phase onto tree leaves or needles in trees. Firstly, we used field-emission scanning electron microscopy (FE-SEM) to observe black carbon (BC) particles that were artificially sprayed onto the leaves or needles. The distribution of BC particles deposited on the leaves and needles were distinguished based on the size and morphological features of the particles. The distribution and agglomerates size of BC particles differed between two spraying methods of BC particles employed. Secondly, we tried to visualize gold (Au) particles that were artificially sprayed onto the leaves using energy dispersive X-ray spectrometry (EDX) coupled to FE-SEM. We detected the Au particles based on the characteristic X-ray spectrum, which was secondarily generated from the Au particles. In contrast to the case of BC particles, the Au particles did not form agglomerates and were uniformly distributed on the leaf surfaces. The present results show that our methods provide useful information of adsorption and/or behavior of fine particles at the submicron level on the surface of the leaves.

An Experimental Study on Composition Characteristics of SiO$_2$/TiO$_2$/Multicomponent Particle Generated in a Coflow Diffusion Flame (화염중 발생하는 SiO$_2$/TiO$_2$/다성분입자의 조성특성에 관한 실험적 연구)

  • Kim, Tae-O;Seo, Jeong-Su;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1175-1182
    • /
    • 2001
  • Chemical compositions of polydisperse SiO$_2$/TiO$_2$multicomponent aggregates were measured for different heights from the burner surface and different mobility diameters of aggregates. SiO$_2$/TiO$_2$multicomponent particles were generated in a hydrogen/oxygen coflow diffusion flame from two sets of precursors: TTIP(titanium tetraisopropoxide), TEOS(tetraethylorthosilicate). To maintain 1:1 mole ratio of TTIP:TEOS vapor, flow rate of carrier gas $N_2$was fixed at 0.6lpm for TTIP, at 0.1lpm for TEOS. In-situ sampling probe was used to supply particles into DMA(differential mobility analyzer) which was calibrated with using commercial DMA(TSI, model 3071A) and classifying monodisperse multicomponent particles. Classified monodisperse particles were collected with electrophoretic collector. The distributions of composition from particles to particle were determined using EDS(energy dispersive spectrometry) coupled with TEM(transmission electron microscope). The chemical(atomic) compositions of classified monodisperse particle were obtained for different heights; z=40mm, 60mm, 80mm. The results suggested that the chemical(atomic) composition of SiO$_2$decreased with the height from burner surface and the composition of SiO$_2$and TiO$_2$approached to the value of 1 to 1 fat downstream. It is also found that the composition of SiO$_2$decreases as the mobility diameter of aggregate increases.