• Title/Summary/Keyword: Energy Cost Evaluation

Search Result 488, Processing Time 0.028 seconds

Cost-Effectiveness Evaluation of Energy Conservation Programs Using Avoided Operating Cost Calculation (운전회피비용 계산을 이용한 효율향상 프로그램의 비용효과 분석)

  • 김회철;이기송;박종배;신중린;신점구
    • Journal of Energy Engineering
    • /
    • v.11 no.4
    • /
    • pp.317-323
    • /
    • 2002
  • This paper proposed the calculation method of the generation operating avoided cost to cost-effectiveness evaluation of energy conservation programs that compounded the Proxy Plant Method and Load Decrement Method. This method introduced an operating index of the Energy Efficiency Demand-Side Management (EEDSM) resources based on the end-user's behaviors on the electricity power usage. The operation index is applied to calculate the hourly operating capacity of diffused high-efficiency appliances. And the operating capacity on the peak load hours for reference load is computed through the reduction of the peak load that contributes to that hour. Also, the proposed method evaluated the effect of EEDSM resources. The IEEE-RTS is adopted as a sample system to analyze impacts of an EEDSM. This paper, we have analyzed the effect of EEDSM upon the changes in the generation of generator, generation cost and the system marginal price (SMP). This method can be used to evaluate the impact of the diffused DSM resource and to estimate the impact in short-term EEDSM program. Further, result of the calculation can be utilized to pabulum for effect analysis of EEDSM resources.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

Evaluation and Planning of Distribution System Considering Reliability and Harmonics (신뢰도와 고조파를 고려한 배전시스템의 평가 및 계획)

  • Lee Buhm;Kim Yong-ha;Choi Sang-kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.167-172
    • /
    • 2005
  • This paper presents a methodology to support decision making for distribution system planning based on value. To evaluate the reliability value, we employ valued-based distribution reliability assessment. To evaluate the harmonics value, we employ a marginal pricing method, and by using reliability cost, harmonics cost, and construction cost, we can make the most economic decision. By applying the method to the real system, we show this method can get the best result which meet reliability and harmonics level.

Evaluation Study of LCOE for 8 MW Offshore Floating Wind Turbine in Ulsan Region (울산 앞바다 8 MW급 부유식 해상풍력터빈의 LCOE 연구 )

  • Dong Hoon Lee;Hee Chang Lim
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2023
  • The commercialization has been of great importance to the clean energy research sector for investing the wind farm development, but it would be difficult to reach a social consensus on the need to expand the economic feasibility of renewable energy due to the lack of reliable and continuous information on levelized cost of Energy (LCOE). Regarding this fact, this paper presents the evaluation of LCOE, focusing on Ulsan offshore region targeting to build the first floating offshore wind farm. Energy production is estimated by the meteorology data combined with the Leanwind Project power curve of an exemplar wind turbine. This work aims to analyze the costs of the Capex depending on site-specific variables. The cost of final LCOE was estimated by using Monte-Carlo method, and it became an average range 297,090 KRW/MWh, a minimum of 251,080 KRW/MWh, and a maximum of 341,910 KRW/MWh. In the year 2021, the SMP (system marginal price) and 4.5 REC (renewable energy certificate) can be paid if 1 MWh of electricity is generated by renewable energy. Considering current SMP and REC price, the floating platform industry, which can earn around 502,000 KRW/MWh, can be finally estimated highly competitive in the Korean market.

A study on economic evaluation when renewable energy system is introduced in public buildings inside of Daegu Sin-seo innovation city (대구신서혁신도시 내 공공건축물의 신재생에너지 시스템 도입시 경제성 평가에 관한 연구)

  • Kim, Bo-Ra;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.175-180
    • /
    • 2009
  • According to an increasing demand of political support and development on renewable energy as a solution for the energy problem in Korea, the government has established a goal to raise renewable energy supply from 2.27% to 5% until 2011. Especially in the case of public building in which energy use is in great demand, it would bring a great advantage to develop and utilize the Photovoltaic System as an electric energy and Geothermal Heat Pump System as a thermal energy. On the occasion of Photovoltaic System, Photovoltaic module can be used as an architectural material so that it can reduce construction cost and when we use solar energy, it is possible to make building's own power supply. As for Geothermal Heat Pump System, It can be used infinitely as long as the solar energy exist and operation cost is cheap and yearly efficiency is stable. However, we need to make a plan to reduce early investment expanses for these two renewable energy systems and to expand a diffusion rate as we develop a competitive domestic technology level. So in this study, we are going to perform evaluation of economical efficiency according to the introduction of Photovoltaic System and Geothermal Heat Pump System in public buildings which will be built up inside of Daegu Sin-seo innovation city. As a first step, we will investigate present installation condition of these two renewable energy systems and based upon that, will seek efficient introduction program of renewal energy systems that can be applied in public buildings.

  • PDF

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

Cost-effectiveness Analysis and Application of DSM Program (DSM 프로그램의 비용효과 분석 및 적용)

  • Park, J.J.;Rhee, C.H.;Jo, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.692-694
    • /
    • 1996
  • Recently, rapid increase in electricity demand, tremendous financial need for new power plant construction, and environmental problem have led to search for more efficient energy production and energy conservation technologies. Due to the potential energy and cost savings to electric utilities, DSM plays an important role in the electric resource planning. However, implementation of cost-effective DSM program requires appropriate analysis methodologies and procedures. In this study, we present the cost-effectiveness analysis model for DSM program evaluation. We also present a case study to analyze DSM program.

  • PDF

Validating the Applicability of a Simplified Correlation Method for Economic Evaluation of Cooling Plants (냉방열원기기의 경제성 평가를 위한 간이계산법의 적용성 검토)

  • 김영섭;김강수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.854-862
    • /
    • 2002
  • In the previous research, a simplified correlation method was developed as an easy prediction tool for comparing energy use of cooling plants. The purpose of this paper is to test the applicability of this method for economic evaluation with two zones of a 20-story commercial building in Seoul. The results of this method were compared with the DOE-2 simulation and actual measured data. Then, Comparisons of life cycle cost were carried out for three types of cooling plants. Testing of one zone showed good agreement of within 10% error in cooling energy use and within 2% error in LCC. But testing of the other zone indicated that the use of this method were invalid when input variables were used beyond its valid range.

Economic Evaluation by Compared Battery Energy Storage System(BESS) and Conventional Combined Cycle of power Generation Cost (복합화력발전시스템과의 발전원가 비교에 의한 전지전력저장시스템의 경제성 분석)

  • Kim, Eung-Sang;Kim, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • This paper describes the economic evaluation of battery energy storage system(BESS) for the domestic application. Application target is decided on conventional combined cycle of domestic and we analyzed economics that compared conventional combined cycle with power generation cost in development and the commercialized in case that establish it on utility and customer, urban and rural. The result shows that about the same conventional combined cycle of Anyang, Bundang and Pyungtak but more economical than seoincheon conventional combined cycle. And, in case of capacity enlargment and using the maintenance free battery more economical than conventional system.

  • PDF

Evaluation of Reliability and Interruption Cost of Distribution Power System in Industrial Complex (산업단지내 배전계통의 공급신뢰도 및 정전비용 평가)

  • Choi, Sang-Bong;Nam, Ki-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Rhoo, Hee-Seok;Lee, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.95-96
    • /
    • 2006
  • As the power industry moves towards open competition, there has been a call for methodology to evaluate distribution power system reliability by using customer interruption costs. Accordingly, it is increased for methodology to evaluate distribution power system reliability in power supply zones under competitive electricity market. This paper presents algorithm to evaluate system average interruption duration index. expected energy not supplied and system outage cost taking Into consideration failure rate of distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, distribution system of a dual supply system consisting of mostly high voltage customers in industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index and expected energy not supplied in sample industrial complex area are shown in detail.

  • PDF