• Title/Summary/Keyword: Energy Cost

Search Result 4,586, Processing Time 0.029 seconds

Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea (국내 해양 CCS 사업의 HSE 관리 프레임워크 구축 전략)

  • Noh, Hyonjeong;Kang, Kwangu;Kang, Seong-Gil;Lee, Jong-Gap
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • Korea is preparing an offshore carbon capture, transport and storage (CCS) demonstration project which is recognized as one of important $CO_2$ reduction technologies to mitigate climate change. The offshore CCS project aims to transport, inject and store large amount of $CO_2$ into offshore geologic formation, and has a potential risk of leakage which might cause disastrous damage to human health, environment and property. Therefore, in order to ensure the safety of the offshore CCS project, a strict HSE (health, safety and environment) management plan and its implementation are required throughout the project life cycle. However, there are no HSE domestic laws or regulations applicable to CCS projects, and the related research is insufficient in Korea. For the derivation of the essential and urgent requirement in HSE management framework applicable to the offshore CCS project in Korea, we analysed the HSE management methodologies and foreign CCS HSE management guidelines and cases. First, this paper has analyzed ISO 31000, a generalized risk management principles. Second, we have investigated the HSE management practices of CCS projects in Norway and UK. Based on the analyses, we suggested the necessity of developing the HSE Philosophy and the HSE management process through the whole life cycle. Application of HSE management in early phase of an offshore CCS project will promote systematic and successful project implementation in a cost-effective and safe way.

Recent Progress in Air Conditioning and Refrigeration Research -A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2000 and 2001- (공기조화, 냉동 분야의 최근 연구 동향 -2000년 및 2001년 학회지 논문에 대한 종합적 고찰 -)

  • 강신형;한화택;조금남;이승복;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1102-1139
    • /
    • 2002
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2000 and 2001 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD technologies were widely applied for developing facilities and their systems. (2) Most of papers related with heat transfer analysis and heat exchanger shows dealt with convection, evaporation, and channel flow for the design application of heat exchanger. The numerical heat transfer simulation studies have been peformed and reported to show heat transfer characteristics. Experimental as well as numerical studies on heat exchanger were reported, while not many papers are available for the system analysis including heat exchanger. (3) A review of the recent studies on heat pump system shows that performance analysis and control of heat pump have been peformed by various simulations and experiments. The research papers on multi-type heat pump system increased significantly. The studies on heat pipe have been examined experimently for change of working characteristics and strut lure. Research on the phase change has been carried out steadily and operation strategies of encapsulated ice storage tank are reported experimentally in several papers. (4) A review of recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. Evaporation and condensation heat transfer characteristics are investigated for tube shapes and new alternative refrigerants. Studies on components of refrigeration/air conditioning system are carried to examine efficiency for various compressors and performance of new expansion devices. In addition to thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out, however research works on two-phase flow seemed to be insufficient. (5) A review of the recent studies on absorption cooling system indicates that heat and mass transfer phenomena have been investigated to improve absorber performance. Various experimental data have been presented and several simulation models have been proposed. A review of the recent studies on duct and ventilation shows that ventilation indices have been proposed to quantify the ventilation performance in buildings and tunnels. Main efforts have been focused on the applications of ventilation effectiveness in practice, either numerically using computational fluid dynamics or experimentally using tracer gas techniques. (6) Based on a review of recent studies on indoor thermal environment and building service systems, research issues have mainly focused on many innovative ideas such as underfloor air-conditioning system, personal environmental modules, radiant floor cooling and etc. Also, the new approaches for minimizing energy consumption as well as improving indoor environmental conditions through predictive control of HVAC systems, various activities of building energy management and cost-benefit analysis for economic evaluation were highlighted.

The Effects of amino acid balance on heat production and nitrogen utilization in broiler chickens : measurement and modeling

  • Kim, Jj-Hyuk;MacLeod, Murdo G.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.80-90
    • /
    • 2004
  • Three experiments were performed to test the assumption that imbalanced dietary amino acid mixtures must lead to increased heat production (HP). The first experiment was based on diets formulated to have a wide range of crude protein (CP) concentrations but a fixed concentration of lysine, formulated to be the first-limiting amino acid. In the second (converse) experiment, lysine concentration was varied over a wide range while CP content was kept constant. To prevent the masking of dietary effects by thermoregulatory demands, the third experiment was performed at 30 $^{\circ}C$ with the diets similar to the diets used in the second experiment. The detailed relationships among amino acid balance, nitrogen (N) metabolism and energy (E) metabolism were investigated in a computer-controlled chamber calorimetry system. The results of experiments were compared with the predictions of a computerised simulation model of E metabolism. In experiment 1. with constant lysine and varying CP, there was a 75 % increase in N intake as CP concentration increased. This led to a 150 % increase in N excretion. with no significant change in HP. Simulated HP agreed with the empirically determined results in not showing a trend with dietary CP. In experiment 2, with varying lysine but constant CP, there was a 3-fold difference in daily weight gain between the lowest and highest lysine diets. HP per bird increased significantly with dietary lysine concentration. There was still an effect when HP was adjusted for body weight differences, but it failed to maintain statistical significance. Simulated HP results agreed in showing little effect of varying lysine concentration and growth rate on HP. Based on the results of these two experiments, the third experiment was designed to test the response of birds to dietary lysine in high ambient temperature. In experiment 3 which performed at high ambient temperature (30 $^{\circ}C$), HP per bird increased significantly with dietary lysine content, whether or not adjusted for body-weight. The trend was greater than in the previous experiment (20 $^{\circ}C$).

  • PDF

Feasibility of Two Dimensional Ion Chamber Array for a Linac Periodic Quality Assurance (선형가속기의 품질관리를 위한 2차원이온전리함배열의 유용성)

  • Lee, Jeong-Woo;Hong, Se-Mie;Park, Byung-Moon;Kang, Min-Young;Kim, You-Hyun;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Aim of this study is to investigate the feasibility of 2D ion chamber array as a substitute of the water phantom system in a periodic Linac QA. For the feasibility study, a commercial ion chamber matrix was used as a substitute of the water phantom in the measurement for a routine QA beam properties. The device used in this study was the I'm RT MatriXX (Wellhofer Dosimetrie, Germany). The MatriXX consists of a 1,020 vented ion chamber array, arranged in $24{\times}24\;cm^2$ matrix. Each ion chamber has a volume of $0.08\;cm^3$, spacing of 0.762 cm. We investigated dosimetric parameters such as dose symmetry, energy ($TPR_{20,10}$), and absolute dose for comparing with the water phantom data with a Farmer-type ionization chamber (FC65G, Wellhofer Dosimetrie, Germany). For the MatriXX measurements, we used the white polystyrene phantom (${\rho}:\;1.18\;g/cm^3$) and also considered the intrinsic layer (${\rho}:\;1.06\;g/cm^3$, t: 0.36 cm) of MatriXX to be equivalent to water depth. In the preliminary study of geometrical QA using MatriXX, the rotation axis of collimator and half beam junction test were included and compared with film measurements. Regarding the dosimetrical QA, the MatriXX has shown good agreements within ${\pm}1%$ compared to the water phantom measurements. In the geometrical test, the data from MatriXX were comparable with those from the films. In conclusion, the MatriXX is a good substitute for water phantom system and film measurements. In addition, the results indicate that the MatriXX as a cost-effective novel QA tool to reduce time and personnel power.

  • PDF

Reduction of Carbon-Dioxide Emission Applying Carbon Capture and Storage(CCS) Technology to Power Generation and Industry Sectors in Korea (국내 전력 발전 및 산업 부문에서 탄소 포집 및 저장(CCS) 기술을 이용한 이산화탄소 배출 저감)

  • Wee, Jung-Ho;Kim, Jeong-In;Song, In-Sung;Song, Bo-Yun;Choi, Kyoung-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.961-972
    • /
    • 2008
  • In 2004, total emissions of Greenhouse Gases(GHGs) in Korea was estimated to be about 590 million metric tons, which is the world's 10th largest emissions. Considering the much amount of nation's GHG emissions and growing nation's position in the world, GHG emissions in Korea should be reduced in near future. The CO$_2$ emissions from two sub-sections of energy sector in Korea, such as thermal power plant and industry section(including manufacturing and construction industries), was about 300 million metric tons in 2004 and this is 53.3% of total GHG emissions in Korea. So, the mitigation of CO$_2$ emissions in these two section is more important and more effective to reduce the nation's total GHGs than any other fields. In addition, these two section have high potential to qualitatively and effectively apply the CCS(Carbon Capture and Storage) technologies due to the nature of their process. There are several CCS technologies applied to these two section. In short term, the chemical absorption technology using amine as a absorbent could be the most effectively used. In middle or long term, pre-combustion technology equipped with ATR(Autothermal reforming), or MSR-$H_2$(Methane steam reformer with hydrogen separation membrane reactor) unit and oxyfuel combustion such as SOFC+GT(Solid oxide fuel cell-Gas turbine) process would be the promising technologies to reduce the CO$_2$ emissions in two areas. It is expected that these advanced CCS technologies can reduce the CO$_2$ avoidance cost to $US 8.5-43.5/tCO$_2$. Using the CCS technologies, if the CO$_2$ emissions from two sub-sections of energy sector could be reduced to even 10% of total emissions, the amount of 30 million metric tons of CO$_2$ could be mitigated.

Oil Fluorescence Spectrum Analysis for the Design of Fluorimeter (형광 광도계 설계인자 도출을 위한 기름의 형광 스펙트럼 분석)

  • Oh, Sangwoo;Seo, Dongmin;Ann, Kiyoung;Kim, Jaewoo;Lee, Moonjin;Chun, Taebyung;Seo, Sungkyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2015
  • To evaluate the degree of contamination caused by oil spill accident in the sea, the in-situ sensors which are based on the scientific method are needed in the real site. The sensors which are based on the fluorescence detection theory can provide the useful data, such as the concentration of oil. However these kinds of sensors commonly are composed of the ultraviolet (UV) light source such as UV mercury lamp, the multiple excitation/emission filters and the optical sensor which is mainly photomultiplier tube (PMT) type. Therefore, the size of the total sensing platform is large not suitable to be handled in the oil spill field and also the total price of it is extremely expensive. To overcome these drawbacks, we designed the fluorimeter for the oil spill detection which has compact size and cost effectiveness. Before the detail design process, we conducted the experiments to measure the excitation and emission spectrum of oils using five different kinds of crude oils and three different kinds of processed oils. And the fluorescence spectrometer were used to analyze the excitation and emission spectrum of oil samples. We have compared the spectrum results and drawn the each common spectrum regions of excitation and emission. In the experiments, we can see that the average gap between maximum excitation and emission peak wavelengths is near 50 nm for the every case. In the experiment which were fixed by the excitation wavelength of 365 nm and 405 nm, we can find out that the intensity of emission was weaker than that of 280 nm and 325 nm. So, if the light sources having the wavelength of 365 nm or 405 nm are used in the design process of fluorimeter, the optical sensor needs to have the sensitivity which can cover the weak light intensity. Through the results which were derived by the experiment, we can define the important factors which can be useful to select the effective wavelengths of light source, photo detector and filters.

The Latest Progress on the Development of Technologies for $CO_2$ Storage in Marine Geological Structure and its Application in Republic of Korea (해저 지질구조내 $CO_2$ 저장기술의 연구개발 동향 및 향후 국내 실용화 방안)

  • Kang, Seong-Gil;Huh, Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.1
    • /
    • pp.24-34
    • /
    • 2008
  • To mitigate the climate change and global warming, various technologies have been internationally proposed for reducing greenhouse gas emissions. Especially, in recent, carbon dioxide capture and storage (CCS) technology is regarded as one of the most promising emission reduction options that $CO_2$ be captured from major point sources (eg., power plant) and transported for storage into the marine geological structure such as deep sea saline aquifer. The purpose of this paper is to review the latest progress on the development of technologies for $CO_2$ storage in marine geological structure and its perspective in republic of Korea. To develop the technologies for $CO_2$ storage in marine geological structure, we carried out relevant R&D project, which cover the initial survey of potentially suitable marine geological structure fur $CO_2$ storage site and monitoring of the stored $CO_2$ behavior, basic design for $CO_2$ transport and storage process including onshore/offshore plant and assessment of potential environmental risk related to $CO_2$ storage in geological structure in republic of Korea. By using the results of the present researches, we can contribute to understanding not only how commercial scale (about 1 $MtCO_2$) deployment of $CO_2$ storage in the marine geological structure of East Sea, Korea, is realized but also how more reliable and safe CCS is achieved. The present study also suggests that it is possible to reduce environmental cost (about 2 trillion Won per year) with developed technology for $CO_2$ storage in marine geological structure until 2050.

  • PDF

Effects of Water Temperature and Body Weight on Oxygen Consumption Rate of Black Rockfish, Sebastes schlegeli (조피볼락, Sebastes schlegeli의 산소 소비율에 미치는 수온과 체중의 영향)

  • Oh, Sung-Yong;Noh, Choong Hwan;Myoung, Jung-Goo;Jo, Jae-Yoon
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of water temperature (T) and body weight (W) on the oxygen consumption of the fasted black rockfish, Sebastes schlegeli was investigated to provide empirical data for the culture management and bioenergetic growth model of this species. The mean wet body weights of two fish groups used for the present experiment were $12.9{\pm}2.7g$ ($mean{\pm}SD$) and $351.1{\pm}9.2g$. The oxygen consumption rate (OCR) was measured under three water temperature regimes (15, 20 and $25^{\circ}C$) at an interval of 5 minutes for 24 hours using a continuous flow-through respirometer. In each treatment three replicates were set up and 45 fish in small size groups and 6 fish in large size groups were used. The OCRs increased with increasing water temperature in both size groups (p<0.001). Mean OCRs at 15, 20 and $25^{\circ}C$ were 414.2, 691.5 and $843.8mg\;O_2\;kg^{-1}h^{-1}$ in small size groups, and 182.0, 250.7 and $328.2mg\;O_2\;kg^{-1}h^{-1}$ in large size groups, respectively. The OCRs decreased with increasing body weights in three water temperature groups (p<0.001). The mass effect on metabolic rate can be expressed by the power of 0.69~0.75. The data are best described by the relationship: OCR=89.12+28.79T-1.17W. $Q_{10}$ values ranged 1.90~2.79 between 15 and $20^{\circ}C$, 1.49~1.71 between 20 and $25^{\circ}C$, and 1.80~2.03 over the full temperature range, respectively. The energy loss by metabolic cost increased with increasing water temperature and decreasing body weight (p<0.001). Mean energy loss rates by oxygen consumption at 15, 20 and $25^{\circ}C$ were 282.9, 472.3 and $576.3kJ\;kg^{-1}d^{-1}$ in small size groups and 124.3, 171.3 and $224.1kJ\;kg^{-1}d^{-1}$ in large size groups, respectively.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Survey of ICT Apply to Plastic Greenhouse, Rack·Pinion Adaption to Single Span and CFD Analysis (온실 ICT융복합 실태조사와 복숭아형 랙피니언천창 적용 단동온실 및 CFD 유동해석)

  • Cho, Kyu Jeong;Kim, Ki Young;Yang, Won Mo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.308-316
    • /
    • 2015
  • This study was conducted to investigate the situation of ICT apply to plastic greenhouse, and the results be apply to design of new one. A CFD analysis were conducted to monitering the ventilation and energy saving of the single span greenhouse newly designed. The causes of delay to apply ICT to plastic greenhouse are the high cost for installation(24%), insufficiency of after services(19%), often disorder(16%), unskillful management of soft ware(15%), insufficient ICT efficiency(13%) and unsatisfying of income increase(12%). The parts of problem occurred in ICT plastic greenhouse are the structure, actuator, environmental control system and sensor(approximate 14%, respectively), remote control technique(13%), plant management technique(12%), energy saving technique(10%) and utilization of software(8%). In the condition of lateral window closed, the average wind speed changed to slow, but it was faster in the condition of leeward side window opened than in the condition of lee and winward side window opened. The air movement in the condition of lateral window closed occur by air moving fan not by out air. It is not affect the room temperature but effective the uniformity of room temperature. The average temperature of low height greenhouse was uniform than high height one. The average temperature in condition of 3rd curtain opened become same with outside temperature after 2 hours, but take more 5 hours in condition of 3rd curtain closed.