• Title/Summary/Keyword: Energy Cost

Search Result 4,606, Processing Time 0.032 seconds

Economic Analysis of Heat Pump System through Actual Operation (히트 펌프 냉난방 시스템의 실사용을 통한 경제성 분석)

  • Shin, Gyu-Won;Kim, Gil-Tae;Joo, Ho-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.921-926
    • /
    • 2006
  • The present study has been conducted economic analysis through actual operation of EHP and GHP which are installed at the same building of an university Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze LCC and economical efficiency is compared. The initial cost is considered on the basis of actual costs, and annual energy cost is converted into the cost after measuring electricity and gas consumption a day. LCC applied present value method is used to assess economical efficiency of both them. Variables used to LCC analysis are electricity cost escalation rate, natural gas cost escalation rate, interest rate, and service lives and when each of them are 4%, 2%, 8%, and 20 years, results of analysis short that EHP(148,257,306 won) is 8.05%(12,981,990 won) more profitable than GHP(161,239,295 won).

  • PDF

Empirical Research on Application of ICT for Reduction of Energy Consumption of Hospital Buildings (ICT를 활용한 병원건물의 에너지 절감방안 연구)

  • Lee, Junghwan;Han, Youngdo;Kim, Dongwook
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.422-430
    • /
    • 2018
  • Increase in oil prices and building energy consumption has been a great burden for Korea which has significant energy dependence on foreign energy sources. In this context, reduction of building energy consumption, which comprises 40% of total energy consumption, is a very important issue. This research therefore empirically analyzed a hospital "P" that implemented ICT-based energy consumption and cost reduction initiative. The hospital first replaced existing water absorber for heating/cooling air and boiler for heating water with water heat storage heat pump system. This was accompanied by subscribing to different electricity price plans to maximize cost reduction. Secondly, the hospital additionally applied ICT-based optimized control algorithm that considers surrounding factors (external temperature, changes in energy demand). The analysis of these mechanisms indicate that the ICT-based energy consumption and cost reduction initiative for hospitals can reduce energy consumption by 53.6% with replacement of low-efficiency equipment and additionally by 18.2% with optimized control algorithm. The mechanisms will provide energy consumption reduction opportunities for other hospitals and buildings with high energy consumption.

Study on Cost of Energy(COE) Reduction Scenario of Korean Offshore Wind Power (해상풍력발전의 에너지단가(COE)절감 시나리오 연구)

  • Sung, Jin Ki;Lee, Jong Hoon;Kang, Kung Suk;Lee, Tae Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1520-1527
    • /
    • 2013
  • The purpose of this study is to derive COE reduction targets of offshore wind power in Korea. In addition, innovation factors for achieving the COE reduction targets were derived. Also the COE reduction targets of offshore wind power was to improve that national policy, technology, industry and improving regulations would like to help. The results of this study has been created based on the various assumptions, scenarios and experts' discussions. Currently, offshore wind power generation price is 229.72won/kWh in 2012. According to the study, COE of offshore wind power has been proposed 88.8won/kWh at third scenario by 2030. This result has shown competitiveness with fossil fuel power generation.

Operating Cost Analysis of a High Temperature Ground Source Heat Pump System for a Greenhouse (시설원예용 대온도차 지열원 히트펌프 운전비용 효과 분석)

  • Kang, Shin-Hyung;Park, Seung Byung;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • It is very important to obtain a out-of season production in horticultural greenhouses corresponding with higher crop prices. A ground source heat pump system has been highly spotlighed as an energy efficient heating system for the greenhouse. This paper investigated the operating cost of the ground source heat pump system with the variation of generating temperature and designing methods for heating system of the greenhouse. Even though the COP of the ground source heat pump system decreased with an increment of generating temperature in heating mode, the operating cost could be reduced. By adopting the high temperature heat pump system and heat storage tank, it could be achieved to save energy and reduce the operating time of auxiliary oil heating system for producing good plant-growth in the greenhouse.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

Fuzzy optimization for the removal of uranium from mine water using batch electrocoagulation: A case study

  • Choi, Angelo Earvin Sy;Futalan, Cybelle Concepcion Morales;Yee, Jurng-Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1471-1480
    • /
    • 2020
  • This research presents a case study on the remediation of a radioactive waste (uranium: U) utilizing a multi-objective fuzzy optimization in an electrocoagulation process for the iron-stainless steel and aluminum-stainless steel anode/cathode systems. The incorporation of the cumulative uncertainty of result, operational cost and energy consumption are essential key elements in determining the feasibility of the developed model equations in satisfying specific maximum contaminant level (MCL) required by stringent environmental regulations worldwide. Pareto-optimal solutions showed that the iron system (0 ㎍/L U: 492 USD/g-U) outperformed the aluminum system (96 ㎍/L U: 747 USD/g-U) in terms of the retained uranium concentration and energy consumption. Thus, the iron system was further carried out in a multi-objective analysis due to its feasibility in satisfying various uranium standard regulatory limits. Based on the 30 ㎍/L MCL, the decision-making process via fuzzy logic showed an overall satisfaction of 6.1% at a treatment time and current density of 101.6 min and 59.9 mA/㎠, respectively. The fuzzy optimal solution reveals the following: uranium concentration - 5 ㎍/L, cumulative uncertainty - 25 ㎍/L, energy consumption - 461.7 kWh/g-U and operational cost based on electricity cost in the United States - 60.0 USD/g-U, South Korea - 55.4 USD/g-U and Finland - 78.5 USD/g-U.

INTEGRATED SOCIETAL RISK ASSESSMENT FRAMEWORK FOR NUCLEAR POWER AND RENEWABLE ENERGY SOURCES

  • LEE, SANG HUN;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.461-471
    • /
    • 2015
  • Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

The Possible Minimum Chicken Nutrient Requirements for Protecting the Environment and Improving Cost Efficiency - Review -

  • Nahm, K.H.;Carlson, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.755-768
    • /
    • 1998
  • Nitrogen and phosphorus are major nutrients in animal feeds which partially remain in the environment as pollution. In addition, nitrogen and phosphorus along with energy are the main nutrients which determine the feed cost. Any decreases in the levels of these three nutrients can contribute to reducing the pollution problem as well as the cost of feed. The nutrient requirements for chickens in the work here reported should allow for the addition of mixed enzymes (phytases, proteases, glucanases, xylanases and others). Such minimal levels of crude protein in the research results which are here reported are 16% for 0-6 weeks of age, 13.5% for 7-12 weeks of age, 11.5% for 13-18 weeks of age for layer type chicks, 13% for layer, 18% for 0-3 weeks of age broiler and 16.5% for 4-7 weeks of age broiler. These research projects have been done without adding enzyme supplements to their experimental diets. The minimal values of phosphorus, shown as available phosphorus, are 0.25% for pullets, 0.09% for layers and 0.25% for broilers with the addition of phytase. The minimum energy requirement (metabolizable energy) for reducing the feed cost could be summarized as 2,750 kcal per kg feed for pullets, 2,800 kcal for layers and 2,700 kcal for broilers.

Economic Feasibility of Various HVAC Systems for Commercial Building and Comparison of Energy Tariffs between Korea and USA (업무시설용 건물 적용 복합 지열원 공조시스템의 경제성 평가 및 한미 요금 비교)

  • Koh, Jae-Yoon;Park, Yool;Seo, Dong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.599-607
    • /
    • 2008
  • In this study, air conditioning systems include ground source heat pump (GSHP), are evaluated for economic feasibility. The building is modeled an air conditioned for 280kW scale. This analysis is compared with the energy tariff programs of Korea and USA. The objectives of this paper are to evaluate the cost-effectiveness of the GSHP and combined system using Life-Cycle Cost (LCC) analysis, and to carry out the sensitivity analysis of key parameters. The paper considered the cases including the base case of air source heat pump and the other two alternates for comparisons. The combined system is not only a cost-effective way to the low energy consumption but also a way to avoid a high initial investment. The variations of initial investment and energy rates give a significant effect on the total LCC and payback period.

Optimization of three small-scale solar membrane distillation desalination systems

  • Chang, Hsuan;Hung, Chen-Yu;Chang, Cheng-Liang;Cheng, Tung-Wen;Ho, Chii-Dong
    • Membrane and Water Treatment
    • /
    • v.6 no.6
    • /
    • pp.451-476
    • /
    • 2015
  • Membrane distillation (MD), which can utilize low-grade thermal energy, has been extensively studied for desalination. By incorporating solar thermal energy, the solar membrane distillation desalination system (SMDDS) is a potential technology for resolving the energy and water resource problems. Small-scale SMDDS (s-SMDDS) is an attractive and viable option for the production of fresh water for small communities in remote arid areas. The minimum-cost design and operation of s-SMDDS are determined by a systematic method, which involves a pseudo steady state approach for equipment sizing and the dynamic optimization using overall system mathematical models. The s-SMDDS employing three MD configurations, including the air gap (AGMD), direct contact (DCMD) and vacuum (VMD) types, are optimized. The membrane area of each system is $11.5m^2$. The AGMD system operated for 500 kg/day water production rate gives the lowest unit cost of $5.92/m^3$. The performance ratio and recovery ratio are 0.85 and 4.07%, respectively. For the commercial membrane employed in this study, the increase of membrane mass transfer coefficient up to two times is beneficial for cost reduction and the reduction of membrane heat transfer coefficient only affects the cost of the DCMD system.