• 제목/요약/키워드: Energy Conversion System

검색결과 1,073건 처리시간 0.024초

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon;Lee, Kui-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2237-2246
    • /
    • 2017
  • A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

Design and Development of a High-Voltage Transformer-less Power Supply for Ozone Generators Based on a Voltage-fed Full Bridge Resonant Inverter

  • Amjad, Muhammad;Salam, Zainal;Facta, Mochammad;Ishaque, Kashif
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.387-398
    • /
    • 2012
  • It is known that transformer based power supplies for ozone generators have low efficiency, high cost and exhibits a limited frequency range of operation. To overcome these disadvantages, this paper proposes a high frequency ozone generator with the absence of a transformer. The voltage step-up is achieved only by utilizing the resonant tank. This is made possible by a novel combination of ozone chamber materials that allow ozone to be generated at only 1.5 - 3.5 $kV_{p-p}$. The input to the resonant tank is driven by a PWM full bridge resonant inverter. Furthermore, zero-current zero-voltage switching (ZCZVS) operation is achieved by employing a duty factor of 25% between the switches of the full bridge. The advantages of the proposed system include high efficiency, low cost and the ability to control ozone production by varying the input voltage to the inverter. The prototype is verified by both simulation and experimental results.

A Novel Dual-Input Boost-Buck Converter with Coupled Inductors for Distributed Thermoelectric Generation Systems

  • Zhang, Junjun;Wu, Hongfei;Sun, Kai;Xing, Yan;Cao, Feng
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.899-909
    • /
    • 2015
  • A dual-input boost-buck converter with coupled inductors (DIBBC-CI) is proposed as a thermoelectric generator (TEG) power conditioner with a wide input voltage range. The DIBBC-CI is built by cascading two boost cells and a buck cell with shared inverse coupled filter inductors. Low current ripple on both sides of the TEG and the battery are achieved. Reduced size and power losses of the filter inductors are benefited from the DC magnetic flux cancellation in the inductor core, leading to high efficiency and high power density. The operational principle, impact of coupled inductors, and design considerations for the proposed converter are analyzed in detail. Distributed maximum power point tracking, battery charging, and output control are implemented using a competitive logic to ensure seamless switching among operational modes. Both the simulation and experimental results verify the feasibility of the proposed topology and control.

태양전지를 이용한 국내 Window Type 광전기화학 수소생산의 경제성 평가 (Economic Evaluation of Domestic Window Type Photoelectrochemical Hydrogen Production Utilizing Solar Cells)

  • 김봉진;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.595-603
    • /
    • 2010
  • This paper deals with an economic evaluation of domestic window type photoelectrochemical hydrogen production utilizing solar cells. We make some sensitivity analysis of hydrogen production prices by changing the values of input factors such as the initial capital cost, the solar to hydrogen conversion efficiency, and the system duration time. The hydrogen production price of the window type photoelectrochemical system was estimated as 1,168,972 won/$kgH_2$. It is expected that hydrogen production cost can be reduced to 47,601 won/$kgH_2$ if the solar to hydrogen conversion efficiency is increased to 14%, the system duration time is increased to 20,000 hours, and the initial capital cost is decreased to 25% of the current level. We also evaluate the hydrogen production cost of the water electrolysis using the electricity produced by solar cells. The corresponding hydrogen production cost was estimated as 37,838 won/$kgH_2$. The photoelectrochemical hydrogen production is evaluated as uneconomical at this time, and we need to enhance the solar to hydrogen conversion efficiency and the system duration time as well as to reduce prices of the system facilities.

에너지 변환 이론에 의한 직선형 피스톤 액추에이터의 권선부 인가 전압의 특성 해석 (Analysis of the Voltage Characteristics Applied to a Actuator Winding by Electromechanical Energy Conversion Theory)

  • 김양호;손웅태;황석영
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 춘계학술대회 논문집
    • /
    • pp.469-472
    • /
    • 2004
  • 본 논문에서는 직선형 피스톤 액추에이터의 응용모델을 제안하고 이를 구현하였다. 구성된 액추에이터의 해석을 위해서 패러데이 법칙으로부터 기본 방정식을 유도하였고, 이를 바탕으로 소형, 경량, 고속 응답을 요구하는 시스템에 적용 가능한 실험적 자료를 얻었다. 또한 본 논문에서는 자계로부터 일반적으로 구할 수 있는 전자기력을 에너지 변환 이론적 관점에서 기계 방정식과 결합하고 전원 공급부의 인가 전압의 변화로부터 액추에이터에 나타나는 현상을 Matlab 프로그램을 활용하여 간접적 방법으로 고찰하였다. 그 결과는 실제적인 설계에 적용할 경우 설계 프로그램의 자료나 부분적 변경시 참조 할 수 있으리라 사료된다. 이 결과를 바탕으로 Linear Actuator MfdBl 시스템과 구현된 직선형 피스톤 액추에이터의 동작이 실제 시스템에 활용될 수 있는 방법으로 가능함을 검증할 수 있었다.

  • PDF

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

On-line Conversion Estimation for Solvent-free Enzymatic Esterification System with Water Activity Control

  • Lee, Sun-Bok;Keehoon Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권2호
    • /
    • pp.76-84
    • /
    • 2002
  • On-line conversion estimation of enzymatic esterification reactions in solvent-free media was investigated. In principle, conversion to ester can be determined from the amount of water produced by the reaction, because water is formed as a by-product in a stoichiometric manner. In this study, we estimated the water production rate only from some measurements of relative humidity and water balances without using any analytical methods. In order to test the performance of the on-line conversion estimation, the lipase-catalyzed esterification of n-capric acid and n-decal alcohol in solvent-free media was performed whilst controlling water activity at various values. The reaction conversions estimated on-line were similar to those determined by offline gas chromatographic analysis. However, when the water activity was controlled at higher values, discrepancies between the estimated conversion values and the measured values became significant. The deviation was found to be due to the inaccurate measurement of the water content in the reaction medium during the initial stages of the reaction. Using a digital filter, we were able to improve the accuracy of the on-line conversion estimation method considerably. Despite the simplicity of this method, the on-line estimated conversions were in good agreement with the off-line measured values.

0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 입자의 고체순환 특성 및 반응 특성 (Solid Circulation and Reaction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System)

  • 류호정;조성호;이승용;이도연;남형석;황병욱;김하나;김정환;백점인
    • 한국수소및신에너지학회논문집
    • /
    • 제30권2호
    • /
    • pp.170-177
    • /
    • 2019
  • Continuous solid circulation test at high temperature and high pressure conditions and batch type reduction-oxidation tests were performed to check feasibility of a 0.5 MWth chemical looping combustion system. Pressure drop profiles were maintained stable during continuous solid circulation up to 16 hours. Therefore, we could conclude that the solid circulation between an air reactor and a fuel reactor could be smooth and stable. The measured fuel conversion and $CO_2$ selectivity were high enough even at high capacity and even after cyclic tests. Therefore, we could expect high reactivity of oxygen carrier at real operation condition.

An Improved Control Method for Power Conversion System under a Weak Grid by the Adoption of Virtual Resistors

  • Gao, Ning;Sang, Shun;Li, Rui;Cai, Xu
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.756-765
    • /
    • 2017
  • The control of the power conversion system (PCS) in a battery energy storage system has a challenge due to the existence of grid impedance. This paper studies an impedance model of an LCL-based PCS in the d-q domain. The feature of a PCS connected to a weak grid is unveiled by use of an impedance model and a generalized Nyquist criterion. It is shown that the interaction between grid impedance and the PCS destabilizes the cascaded system in certain cases. Therefore, this paper proposes a novel control method that adopts virtual resistors to overcome this issue. The improvement in the control loop leads the PCS to a more stable condition than the conventional method. Impedance measurement is implemented to verify the correctness of the theoretical analysis. Experimental results obtained from a down-scaled prototype indicate that the proposed control method can improve the performance of the PCS under a weak grid.