• 제목/요약/키워드: Energy Consumption Efficiency

Search Result 1,785, Processing Time 0.024 seconds

Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles (온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락)

  • Oh, Chi Yeong;Kang, Nam-Hwa
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.292-303
    • /
    • 2021
  • This study identifies the terms frequently used together with energy in online science news articles and topics of the news reports to find out how the term energy is used in everyday life and to draw implications for science curriculum and instruction about energy. A total of 2,171 online news articles in science category published by 11 major newspaper companies in Korea for one year from March 1, 2018 were selected by using energy as a search term. As a result of natural language processing, a total of 51,224 sentences consisting of 507,901 words were compiled for analysis. Using the R program, term frequency analysis, semantic network analysis, and structural topic modeling were performed. The results show that the terms with exceptionally high frequencies were technology, research, and development, which reflected the characteristics of news articles that report new findings. On the other hand, terms used more than once per two articles were industry-related terms (industry, product, system, production, market) and terms that were sufficiently expected as energy-related terms such as 'electricity' and 'environment.' Meanwhile, 'sun', 'heat', 'temperature', and 'power generation', which are frequently used in energy-related science classes, also appeared as terms belonging to the highest frequency. From a network analysis, two clusters were found including terms related to industry and technology and terms related to basic science and research. From the analysis of terms paired with energy, it was also found that terms related to the use of energy such as 'energy efficiency,' 'energy saving,' and 'energy consumption' were the most frequently used. Out of 16 topics found, four contexts of energy were drawn including 'high-tech industry,' 'industry,' 'basic science,' and 'environment and health.' The results suggest that the introduction of the concept of energy degradation as a starting point for energy classes can be effective. It also shows the need to introduce high-tech industries or the context of environment and health into energy learning.

Production of High Hardness Concentrated Seawater Using NF Membrane (나노여과막을 활용한 고경도 농축수 제조)

  • Ji, Ho;Moon, Deok Soo;Choi, Mi Yeon;Kim, Kwang Soo;Lee, Ho Saeng;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.333-337
    • /
    • 2014
  • The purpose of this study is to develop a process technology to produce high hardness concentrated seawater removing chloride ions but containing useful minerals such as magnesium and calcium in the seawater desalination process. In order to make high hardness concentrated seawater, evaporation system is mostly used recently. Because evaporation system requires a large amount of energy consumption, in this study, it was aimed to produce high hardness concentrated seawater using membrane filtration requiring less energy. Nano filtration membranes were used for the experiments, and different types of high hardness concentrated seawater was produced depending on the membranes' specification, the number of times being concentrated, and pressure. As a result, at between 15bar and 20 bar in pressure, in between the second and the third times of concentration, the experiment result showed the best economic efficiency. By the experiment, production of high hardness concentrated seawater seemed to have a good economic feasibility.

Environmental Health Strategies in Korea (우리 나라의 환경정책 방향)

  • 조병극
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • Since 1960's along with industrialization and urbanization, economic growth has been . achieved, however, at the same time, environmental condition has been seriously deteriorated. . Currently, volume of wastewater has been increasing at annual rate of 7% in sewage and 20% in industrial wastewater. However, the nation's sewage treatment serves only 33% of the municipal wastewater as of 1991. Major portion of air pollutants comes from combustion of oil and coal which comprise 81% of total energy use and emission gases from motor vehicles increasing at an accelerated rate. It is known that Korea generates the highest amount of waste per capta. Nevertheless, it is not sufficient to reduce the volume of waste by means of resources recovery and recycling. Recognizing the importance of global environmental problems such as ozone layer depletion, global warming and acid rain, international society has been making various efforts since the 1972 Stockholm conference. In particular, it is expected that the Rio conference which has adopted the Rio declaration and Agenda 21 will form a crucial turning point of the emerging new world order after the Cold War confrontation. To cope with such issues as domestic pollution and global environmental problems, the fundamental national policy aims at harmonizing "environmental protection and sustainable development". The Ministry of Environment has recently set up a mid-term comprehensive plan which includes annual targets for environmental protection. According to the government plan, gradual improvement of various environmental conditions and specific measures to achieve them is planned in time frame. Additional sewage treatment plants will be constructed in urban areas with the target to treat 65% of the nation's municipal sewage by 1996. Supply of clean fuels such as LNG will also be expanded starting from large cities as a cleaner substitute energy for coal and oil. In parallel with expansion of LNG, emphasis will be placed on installation of stack monitoring system. Due to the relatively limited land, government's basic policy for solid waste treatment is to develop large scale landfill facilities rather than small sized ones. Thirty three regional areas have been designated for the purpose of waste management. For each of these regions, big scale landfill site is going to be developed. To increase the rate of waste recycling the government is planning to reinforce separate collection system and to provide industries with economic incentives. As a part of meeting the changing situation on global environmental problems after UNCED, and accommodation regulatory measures stipulated in the global environmental conventions and protocols, national policy will try to alter industrial and economic structure so as to mitigate the increasing trends of energy consumption, by encouraging energy conservation and efficiency. In this regard, more attention will be given to the policy on the development of the cleaner technology. Ultimately, these policies and programs will contribute greatly to improving the current state of national public health.

  • PDF

Thermal Flow Analysis for Development of LED Fog Lamp for Vehicle (차량 LED 안개등 개발을 위한 열유동 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • In order to overcome these disadvantages, the halogen light source, which was previously used as a vehicle fog light, has increased power consumption and a short lifetime, and thus, an automobile light source is gradually being replaced with an LED. However, when the vehicle LED fog light is turned on, there is a disadvantage in reducing the life of the fog lamp due to the high heat generated from the LED. The heat generated by the LED inside the fog lamp is mainly emitted by the heatsink, but most of the remaining heat is released to the outside through convection. When cooling efficiency decreases due to convection, thermal energy generates heat to lenses, reflectors, and bezels, which are the main parts of lamps, or generates high temperatures in LED, thereby shortening the life of LED fog lights. In this study, we tried to improve the heat dissipation performance by convection in addition to the heat dissipation method by heat sink, and to determine the installation location of vents that can discharge the internal air or intake the external air of LED fog lamp for vehicle. Thermal fluid analysis was performed to ensure that the optimal data were reflected in the design. The average velocity of air increased in the order of Case3 and Case2 compared to Case1, which is the existing prototype, and the increase rate of Case3 was relatively higher than that of other cases. This is because the vents installed above and below the fog lamps induce the convective phenomena generated according to the temperature difference, and the heat is efficiently discharged with the increase of the air speed.

Trends of Thermochemical Technology for the Recovery of Phosphorus from Sewage Sludge Ash (열화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술 동향)

  • Jeon, Seulki;Shin, Hyuna;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.87-98
    • /
    • 2018
  • Phosphorus (P) is an essential and irreplaceable element for all living organisms, and it is widely used as a fertilizer. Unfortunately, it is estimated that phosphate reservoir is depleted within about 100 years. Sewage sludge ash (SSA) is an alternative resource for P recovery because of its high P content. However, SSA cannot be directly used as a fertilizer due to heavy metals in it and low P bioavailability. Thermochemical treatment with Cl donor is known to reduce heavy metal contents and increase P bioavailability of SSA. Literature review on thermochemical technologies of SSA for the reduction of heavy metals and bioavailability enhancement has been carried out to estimate the status of current P recovery technology and to develop strategic future research plan for P recovery. The review showed that $CaCl_2$ and $MgCl_2$ were the most effective Cl donors and reaction temperature (< $1000^{\circ}C$) was the critical operation condition for the reduction. The removal efficiency depends on the species of heavy metals. Thermochemical technology of SSA for P recovery showed the possibility of commercial application in the near future to overcome the coming crisis of human sustainability by P depletion, but it needs cost effectiveness and more ecofriendly process to reduce energy consumption.

Estimation of GHGs Emission to Improvement of Facility Efficiency in the Food wastewater Treatment Process (식품폐수처리시설의 설비효율 개선에 따른 온실가스 배출량 평가)

  • An, Sang-Hyung;Song, Jang-Heon;Kim, San;Chung, Jin-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.378-384
    • /
    • 2019
  • In the food wastewater treatment facilities, the water quality improvement effect and the greenhouse gas emission amount followed by the change in electricity usage through a change of the aeration tank ventilation system were evaluated. also, the amount of greenhouse gas emission followed by the change in electricity usage through the change of the sludge dewatering, storage, transporting method was also evaluated. The total GHG emission from food wastewater treatment facility improvement were divided into direct emissions from the treatment processes and indirect ones from electricity usage. The water quality improvement effect of wastewater treatment plant was found to be 63.3% for BOD removal rate, 42.0% for COD removal rate, 71.0% for SS removal rate and 39.6% for T-N removal rate. and according to the results of calculating output by applying both direct emissions of greenhouse gas (Scope 1) and the indirect emission (Scope 2) of greenhouse gas followed by changes in power consumption. It was estimated that there was a total of 276.0tCO2eq./yr(7.5%) greenhouse gas reduction effect from 3,668.8tCO2eq./yr before improvement to 3,392.8tCO2eq./yr after improvement. In this result is not due to the effects of water quality improvement of emission source, but because the reduction in electricity use has reduced the amount of greenhouse gas emissions.

Studies on the Energy and Protein Requirement Determination for Broiler Production -4. Effect of Iso-calorie and Different Protein Level on Broiler Production- (Broiler 생산(生産)에 있어서 Energy와 Protein 요구량(要求量) 결정(決定)에 관한 연구(硏究) (제4보(第4報)) -동일(同一)Energy수준(水準)에서의 Protein 수준이 Broiler 생산(生産)에 미치는 영향(影響)-)

  • Kim, Dae Jin;Kim, Young Kil;Ko, Yong Du
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.395-400
    • /
    • 1983
  • The experiment was conducted to study the effect of protein level on weight gain, feed consumption and the efficiencies of feed, energy and protein when the broiler chick was fed the diet of different protein level with the iso-calorie content. The energy and protein level of the basal ration was 3200 kcal and 22.85% for starter period and 3265 Kcal and 18.58% for finisher period, respectively. In order to increase the protein level of the experimental diet, the basal diet was substituted by fish meal by the ratio of 3, 6, 9, and 12%. The male Abor Acre broiler chicks were employed for 8 weeks and the result obtained were as follows. 1. The weekly body weight gain was significantly greater for Diet C than for Diet A and E in the starter period and greater for Diet A than for Diet E in the finisher period (P<0.05). 2. In stater period the feed intake was not affected by the protein level but in finisher period the feed intake for Diet C, D, and E was significantly reduced compared with Diet A. 3. As for feed conversion ratio, Diet C of 1.43 was improved significantly compared with Diet A of 1.58(P<0.05). 4. As the protein level of diet increased, the energy efficiency ratio increased and however, the protein efficiency ratio decreased in starter and finisher period. In conclusion the best performance of broiler is thought to be realized when the protein and energy level was 23% and 3200 Kcal for starter period and 20% and 3250 Kcal for finisher period, respectively.

  • PDF

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Catching efficiency of LED fishing lamp and behavioral reaction of common squid Todarodes pacificus to the shadow section of color LED light (LED 색광의 음영구역에 대한 살오징어의 행동반응 및 LED 집어등의 어획성능)

  • An, Young-Il;Jeong, Hak-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.183-193
    • /
    • 2011
  • This study made a comparative analysis of behavioral reaction of squid to red (624nm), green (524nm), blue (460nm) & white LED light, its arrival time for the shadow section by making the shadow section in the central section of a water tank just like the bottom part of a squid jigging vessel, and on-site catching efficiency of LED fishing lamp with control fishing vessel. The color LED light showing the highest squidgathering rate as against the shadow section was found to be blue LED light with 39.3% rate under the dark (0.05lx) condition. Under the brighter condition than 0.05lx, white LED light was found to have the highest gathering rate of 41.5%. In addition, it was found that squid gathering rate was high at the shadow section which showed 6.3-fold brightness difference between the shadow section and bright section. As for the arrival time for the shadow section, blue LED light was found to be the fastest in attracting squids in 192.7 seconds under the dark condition while the red LED light was the fastest in luring squids in 164.6 seconds under the bright condition. The ratio of the squid-jigging operation and sailing in fuel consumption of the fishing vessel loaded with LED fishing lamp is about 7 to 1, showing most of the fuel is consumed more in sailing than in squid-jigging operation. As for a catch of squid, the control vessel loaded with MH (Metal Halide) fishing lamp had more catch of 600-7,080 squids than the vessel loaded with LED fishing lamp having a catch of 260-1,700 squids. In addition, even in the comparison of a catch per automatic jigging machine, the catch of the vessel loaded with MH fishing lamp excelled that of the vessel loaded with LED fishing lamp in 6 operations of squid jigging out of 9 operations. The ratio of hand-jigging and automatic jigging machine (one line) in the LED fishing lamp vessel was 1:1.1 excepting the case of having a catch only using an automatic jigging machine, showing almost the same with each other in catches, while in case of a MH fishing lamp vessel, its ratio against hand-jigging was 1 to 5.8, showing hand-jigging excelled in catches.

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.