• Title/Summary/Keyword: Energy Consumption Efficiency

Search Result 1,782, Processing Time 0.029 seconds

Case Study for Energy Conservation Measures of Hospital Buildings Using the Analysis of Energy Consumption Structure (의료시설 에너지절약 운영방법 도출을 위한 사례분석을 통한 에너지 영향요소 분석)

  • Lee, Sangmoon;Cho, Jinkyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.57-69
    • /
    • 2019
  • Because the hospital building operates 24 hours a day, 365 days a year for treatment and restoration of patients, it has a different pattern of energy use than that of ordinary buildings. Hospitals contribute to energy consumption and have a negative environmental impact. This study aims to find how meaningful energy performance, reflecting good energy management and ECMs, can be operated for hospital buildings, a category encompassing complex buildings with different systems and large differences between them. In this study, we proposed the energy diagnosis & evaluation method and energy management process to verify energy saving through operation data based on system & facility characteristics, operation pattern and energy consumption characteristics of hospital building. Energy consumption structures were surveyed throughout 4 reference hospital in Seoul, Korea. Findings confirm that different hospital departments have hugely different energy-demand profiles. Energy efficiency and energy saving potentials are presented. The energy performance analysis can be applied to a wide range of problems in energy-system operation.

An Analysis of Energy Consumption Types Considering Life Patterns of Single-person Households (1인 가구 거주자의 생활패턴이 고려된 에너지소요량 유형 분석)

  • Lee, Seunghui;Jung, Sungwon;Lim, Ki-Taek
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • The energy of the building is influenced by the user 's activity due to the population, society, and economic characteristics of the building user. In order to obtain accurate energy information, the difference in the amount of energy consumption by the activities and characteristics of building users should be identified. The purpose of the study is to identify the difference in the amount of energy consumption by the user's activities in the same building, and to analyse the relationship between user's activities and demographic, social and economic characteristics. For research, energy simulation is performed based on actual user activity schedule. The results of the simulation were clustered by using K-Means clustering, a machine learning technique. As a result, four types of users were derived based on the amount of energy consumption. The more energy used in a cluster, the lower the user's income level and older. The longer a user's indoor activity times, the higher the energy use, and these activities relate to the user's characteristics. There is more than twice the difference between the group that uses the least energy consumption and the group that uses the most energy consumption.

Efficiency Analysis of the HVAC system in the School Facilities Using the Geothermal Energy -Focused on the energy consumption- (지열을 이용한 학교시설의 냉·난방시스템 효율성분석 -에너지 소비량을 중심으로-)

  • Park, Dong-Soon;Lee, Jae-Rim
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.6 no.2
    • /
    • pp.25-52
    • /
    • 2007
  • This paper is focused on the economical efficiency of the geothermal heat pump system in school. As the importance of problems of environment and energy becomes larger, the development and distribution of energy-saving technology in the whole nation has become influential. This paper is intended, targeting on school buildings scattered all over the country, to evaluate the introduction and possibility of a terrestrial heat system which is in the first stage of introduction in the country, through energy consumption and efficiency in case where a terrestrial heat system is introduced. To do that, the author performed a qualitative analysis of the heat pump system using various terrestrial heat energy and the system introduced to existing school buildings and, through the analysis, made tentative evaluation on the most environment-friendly and energy saving type system. Also, the author performed simulation analysis using a currently typical school building standard and, on the basis of this result, conducted efficiency analysis of various heat pump systems. The conclusion according to synthetical analysis & evaluation can be summarized as follows. In case a heat pump system is introduced to a school building, it was deemed the investment in the early stage would increase, but the investment could be collected within 5~6 years through reduction of large operation expenses. Also, it was analyzed in case of terrestrial heat contracted heat mode using midnight electric power among heat pump systems, not only early investment but also operation expenses could be reduced to a great extent. Accordingly in case the system using terrestrial heat energy is applied to the school buildings that are to be newly built or repaired in the future, it will provide an object-lesson to students as well as contributing to energy saving.

  • PDF

A BIM-based Design Method for Energy-Efficient Housing (BIM 기반의 저에너지 주거공간 설계 기법 연구)

  • Yoon, Seung-Hyun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.187-192
    • /
    • 2009
  • Nowadays, global warming and high oil prices were a threat to the survival of the whole human race. One of a solution to respond to these problems is to reduce energy consumption of building. By adopting energy-saving design, the dissemination of low energy building is required. Therefore, to improve energy efficiency while reducing the usage of the design method is necessary to study actively. BIM-based systems applied to buildings, scheduled to be built by reducing the amount of energy reduction technologies can be analyzed. Depending on various design and equipment to set energy savings goals, you can select an alternative. If it is possible to predict the energy efficiency from the initial stage of design and support designing low energy building, we would be able to expect improvement in the economics of housing due to the reduction of energy consumption.

  • PDF

A Study on the Improvement Plans of Energy Performance in University Building through the Analysis of Energy (에너지 해석을 통한 대학건물의 에너지 성능개선 방안에 관한 연구)

  • Jung, Jae-Woong;Kim, Dong-Woo;Seok, Ho-Tae;Yang, Jeong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.50-60
    • /
    • 2010
  • Today, the amount of energy consumption in the university campuses is huge. The effort for the energy consumption reduction in university campuses is certainly needed by the following reason; first, contribution to the greenhouse gas discharge reduction demand. Second, energy cost reduction in university campus. Third, contribution to the improvement of the social awareness as the maximum higher educational institutions. The energy consumption analysis of current situation has to be executed for the energy consumption reduction in university campus. The energy reduction possibility in which it exists in university campuses can be understood through the energy consumption analysis. And the application is possible as fundamental data of the policy establishment for the effective energy reduction in university campuses. Especially, the best way to reduce the energy consumption in university campuses that is the energy consumption reduction of buildings. Accordingly, this study derived the plans for improving the performance of energy in the university building by analyzing case study, so this study analyzed the performance of energy for the university building through VE, a program for the analysis of building energy. Based on this result, this study classified the plans improving the efficiency of energy in university building into the plan for passive control and active control respectively, and suggested some concrete plans, and finally evaluated the performance of decreasing energy consumption for each plan.

A Development of Test Method on the Energy Consumption Efficiency of Domestic Gas Boiler below 70 kW (70 kW 이하 가정용 가스보일러 에너지소비효율 실험방법 개발)

  • Park, Chanil;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2016
  • The energy consumption efficiency in a variety of operational test mode was considered for domestic gas boiler below 70 kW. The energy efficiency test carried out in the experimental conditions similar to the actual operation status was analyzed and compared with the current Korean efficiency test method. Four types of test modes for each boiler(Non-condensing and condensing boiler) were carried out in the condition of laboratory mode(full load, steady state) and actual operating mode. Futhermore divided into two operational status for each of these, it was applied by maximum gas consumption and consumer sales conditions. Test equipment has the function referred to gas boiler standards, such as KS or European standard EN. The equipment should be continuously measured and record the measuring factors which are the flow volume of gas and water, laboratory temperature, water flow volume for heating, return water volume after heating and quantity of the exhaust gases(CO, NO, $NO_2$). The experimental results were found that non-condensing boiler efficiency of laboratory mode is about 10% higher than that of actual mode. In case of condensing boiler, the efficiency of laboratory condition is about 20% higher than that of the actual using conditions. I suggest that the government will gradually take the efficiency test method considering the actual conditions.

Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant (하수처리시설의 에너지자립화 및 경제적 효과분석)

  • Park, Kihak;Lee, Hosik;Ha, Junsu;Kim, Keugtae;Lim, Chaeseung
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

On the Trade-Off between Throughput Maximization and Energy Consumption Minimization in IEEE 802.11 WLANs

  • Serrano, Pablo;Hollick, Matthias;Banchs, Albert
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.150-157
    • /
    • 2010
  • Understanding and optimizing the energy consumption of wireless devices is critical to maximize the network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work, we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to optimize it. We further analyze the impact of the energy configuration of the stations on the throughput performance, and we discuss under which circumstances throughput and energy efficiency can be both jointly maximized and where they constitute different challenges. Our findings are that, although an energy-optimized configuration typically yields gains in terms of throughput as compared against the default configuration, it comes with a reduction in performance as compared against the maximum-bandwidth configuration, a reduction that depends on the energy parameters of the wireless interface.

Methods to Reduce Greenhouse Gas for University Buildings to Make a Low-Carbon Green Campus - With Case Study on the 'E' University -

  • Song, Su Min;Peom, Sung Woo;Park, Hyo Soon;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • University buildings are energy-guzzling facility that consume more than 10,000TOE within a campus annually. Even the consumption is on an upswing trend. Behind such high consumption are there cheap power rates for education facility, lack of high-efficiency equipment and ever-increasing use of various information equipment. Being keenly aware that greenhouse gas emission increases due to such rise of energy consumption, the present study carried out a case study. In the case study, the study chose the buildings of E university from top 10 universities that consume energy most in Seoul and examined the current status of their energy consumption and greenhouse gas emission. And then it set the reduction target of greenhouse gas by year. Putting aside a middle and long-termed strategy for later endeavor, it first established the 1st year's implementation plan (2014) for energy saving and greenhouse gas reduction with limited budget and according to greenhouse gas reduction target. The plan is specified as follows. Targets for energy saving are mainly divided into two sectors: machine equipment and electric equipment. 7 ideas were proposed. Three ideas to improve machine equipment are to replace with high-efficiency boilers and chillers and to adjust the position of the cooling tower. By doing so, it was estimated that energy could be saved by 176.34TOE in total and greenhouse gas could be reduced by 370.771t$CO_2$-eq. Four ideas to improve electric equipment include the replacement with LED lights, LED emergency lights and high-efficiency motors and the installation of motion sensors. It was calculated that such replacement could conserve 1,076.08TOE (electric energy) and reduce 2,181.420t$CO_2$-eq (greenhouse gas).

Application of Frost Detecting Sensors in Refrigerators to Reduce Energy Consumption (냉장고 소비전력 저감을 위한 착상감지센서의 응용 연구)

  • 성창용;나승유;이희영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.147-150
    • /
    • 2000
  • Manual and predictive defrosting method is used in current refrigerators, which have several problems in terms of energy consumption and efficiency. fuming the defrosting system on by the amount of frost remains to be an important problem which has to be improved by refrigerator manufacturers. The sensing of the amount of frost by FDS(Frost Detecting Sensor) and its proper mounting point are investigated in the paper. Also the realization of actual defrosting system through experiments of operation, energy consumption and sensing mechanism is presented.

  • PDF