• 제목/요약/키워드: Energy Consumption Devices

검색결과 368건 처리시간 0.021초

스마트플러그를 위한 서비스 디자인 및 서비스모델 (Service Design and Service Model for Smart Plug)

  • 이희주;윤세환;김용세
    • 한국과학예술포럼
    • /
    • 제19권
    • /
    • pp.561-568
    • /
    • 2015
  • A lot of electrical energy is used in our daily life. While energy saving concerns are overall, consumption practices of people in general are very different. People want to control their energy use and by knowing the amount of energy they use. Smart plug is a new device that measures electricity usage through each plug at an outlet with on/off control. User experience for electrical devices in regards to electricity usage should be newly designed. In this study, based on the survey, personas have been devised and their energy use experience in relation with smart plugs have been designed. Service models have been designed as well. By designing service with smart plug, user could enhance the experience of energy usage and saving and energy consumption practices could be improved in a sustainable manner.

모바일 기기의 에너지 소모를 줄이기 위한 인지 무선 통신에서 효율적인 스펙트럼 센싱 방법 (Enhanced Energy-efficient Spectrum Sensing Scheme in Cognitive Radio Networks)

  • 신영환;서순호;정종문
    • 인터넷정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.1-7
    • /
    • 2019
  • 증강현실, 가상현실, 딥러닝 등 최신 어플리케이션들은 재난상황 대처, 게임 등 다양한 분야에서 효율적으로 쓰일 수 있다. 그에 따라 해당 어플리케이션들이 급속도로 개발되고 있다. 그러나 증강현실, 가상현실과 같은 최신 모바일 어플리케이션은 모바일 기기에 에너지 부담을 가중시킨다. 따라서 모바일 기기가 최신 모바일 어플리케이션에만 에너지를 집중하기 위해선 인지무선 통신과 같은 통신 및 네트워킹에는 에너지 소모를 최소화 시켜야 한다. 본 논문은 Stop Reporting Algorithm (SRA)를 고안하여 인지 무선 통신에서 Centralized Cooperative Spectrum Sensing (CCSS) 기법의 에너지 소모를 줄일 수 있는 방안을 제시한다. 시뮬레이션 결과를 통해 SRA가 인지 무선 통신의 에너지 소모를 감소시킬 수 있음을 보인다.

Cost-Efficient Framework for Mobile Video Streaming using Multi-Path TCP

  • Lim, Yeon-sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1249-1265
    • /
    • 2022
  • Video streaming has become one of the most popular applications for mobile devices. The network bandwidth required for video streaming continues to exponentially increase as video quality increases and the user base grows. Multi-Path TCP (MPTCP), which allows devices to communicate simultaneously through multiple network interfaces, is one of the solutions for providing robust and reliable streaming of such high-definition video. However, mobile video streaming over MPTCP raises new concerns, e.g., power consumption and cellular data usage, since mobile device resources are constrained, and users prefer to minimize such costs. In this work, we propose a mobile video streaming framework over MPTCP (mDASH) to reduce the costs of energy and cellular data usage while preserving feasible streaming quality. Our evaluation results show that by utilizing knowledge about video behavior, mDASH can reduce energy consumption by up to around 20%, and cellular usage by 15% points, with minimal quality degradation.

기존 학교 건물의 외피 성능 개선 방안에 관한 연구 (The Improvement of Building Envelope Performance in Existing School Building)

  • 방아영;박세현;김진희;김용재;김준태
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

Flexible OLEDs: Challenges, Opportunities, and Current Status

  • Hack, Michael;Ma, Rui-Qing;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.211-214
    • /
    • 2009
  • In this paper we will outline the opportunities for flexible OLED devices, both for display and solid-state lighting applications. We will present our recent data, and discuss future challenges, for low power consumption phosphorescent OLED technology fabricated on flexible substrates to enable a new generation of energy efficient electronic devices.

  • PDF

COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션 (Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics)

  • 곽민섭;황건태
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.

Home Energy Management System for Interconnecting and Sensing of Electric Appliances

  • Cho, Wei-Ting;Lai, Chin-Feng;Huang, Yueh-Min;Lee, Wei-Tsong;Huang, Sing-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권7호
    • /
    • pp.1274-1292
    • /
    • 2011
  • Due to the variety of household electric devices and different power consumption habits of consumers at present, general home energy management (HEM) systems suffer from the lack of dynamic identification of various household appliances and a unidirectional information display. This study presented a set of intelligent interconnection network systems for electric appliances, which can measure the power consumption of household appliances through a current sensing device based on OSGi platform. The system establishes the characteristics and categories of related electric appliances, and searches the corresponding cluster data and eliminates noise for recognition functionality and error detection mechanism of electric appliances by applying the clustering algorithm. The system also integrates household appliance control network services so as to control them according to users' power consumption plans or through mobile devices, thus realizing a bidirectional monitoring service. When the system detects an abnormal operating state, it can automatically shut off electric appliances to avoid accidents. In practical tests, the system reached a recognition rate of 95%, and could successfully control general household appliances through the ZigBee network.

A Novel Approach of Using Data Flipping for Efficient Energy on the Internet of Things

  • Ziyad Almudayni;Ben Soh;Alice Li
    • Journal of information and communication convergence engineering
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2023
  • The Internet of Things (IoT) can be defined as the connection of devices, sensors, and actors via the Internet to a single network to provide services to end-users. Owing to the flexibility and simplicity of IoT devices, which impart convenience to end-users, the demand for these devices has increased significantly in the last decade. To make these systems more scalable, achieve a larger number of connected devices, and achieve greater economic success, it is vital to develop them by considering parameters such as security, cost, bandwidth, data rate, and power consumption. This study aims to improve energy efficiency and prolong the lifetime of IoT networks by proposing a new approach called the constrained application protocol CoAP45. This approach reduces the number of updates to the CoAP server using a centralized resource. The simulation results show that the proposed approach outperforms all existing protocols.

사물인터넷에서 경량화 장치 간 DTLS 세션 설정 시 에너지 소비량 분석 (Analysis on Energy Consumption Required for Building DTLS Session Between Lightweight Devices in Internet of Things)

  • 권혁진;강남희
    • 한국통신학회논문지
    • /
    • 제40권8호
    • /
    • pp.1588-1596
    • /
    • 2015
  • 사물인터넷에서는 센서와 같은 자원이 제한된 장치들이 인터넷을 경유하여 통신하고 정보를 공유할 수 있다. 이러한 경량화 장치가 응용계층에서 데이터를 전송할 수 있도록 IETF에서는 전송계층 UDP를 이용하는 CoAP을 표준으로 제정하였으며, 보안을 위해 DTLS를 사용할 것을 권고하고 있다. 그러나 DTLS는 데이터 손실, 단편화, 리오더링 그리고 리플레이 공격 문제를 해결하기 위해 부가적인 보상 기술이 추가되었다. 이로 인해 DTLS는 TLS 보다 성능이 저하된다. 경량화 장치는 배터리로 구성된 경우, 배터리 효율의 극대화를 위해 저전력으로도 동작될 수 있는 보안 설계 및 구현 역시 반드시 고려되어야 한다. 따라서 본 논문에서는 에너지 소비량 관점에서 DTLS의 성능에 대해 논의하고자 한다. 성능 분석을 위해 Cooja 시뮬레이터를 이용하여 센서 장치와 IEEE 802.15.4 기반의 네트워크 실험 환경을 구축하였다. 실험 환경을 통해 DTLS 통신을 하고자 하는 서버와 클라이언트의 에너지 소비량을 각각 측정하였다. 또한 DTLS의 핸드쉐이크 Flight 별 에너지 소모량, 처리 시간 및 수신 시간, 전송 데이터 크기를 측정하여 코드 크기, 암호 프리미티브 그리고 단편화 관점에서 분석된 결과를 함께 기술하였다.